pyplot

package
v0.10.0-pre.2 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 15, 2025 License: Apache-2.0 Imports: 2 Imported by: 0

Documentation

Index

Constants

View Source
const LLGoPackage = "py.matplotlib.pyplot"

Variables

View Source
var Style *py.Object

Functions

func Acorr

func Acorr(x *py.Object) *py.Object

Plot the autocorrelation of *x*.

Parameters ---------- x : array-like

detrend : callable, default: `.mlab.detrend_none` (no detrending)

A detrending function applied to *x*.  It must have the
signature ::

    detrend(x: np.ndarray) -> np.ndarray

normed : bool, default: True

If ``True``, input vectors are normalised to unit length.

usevlines : bool, default: True

Determines the plot style.

If ``True``, vertical lines are plotted from 0 to the acorr value
using `.Axes.vlines`. Additionally, a horizontal line is plotted
at y=0 using `.Axes.axhline`.

If ``False``, markers are plotted at the acorr values using
`.Axes.plot`.

maxlags : int, default: 10

Number of lags to show. If ``None``, will return all
``2 * len(x) - 1`` lags.

Returns ------- lags : array (length “2*maxlags+1“)

The lag vector.

c : array (length “2*maxlags+1“)

The auto correlation vector.

line : `.LineCollection` or `.Line2D`

`.Artist` added to the Axes of the correlation:

- `.LineCollection` if *usevlines* is True.
- `.Line2D` if *usevlines* is False.

b : `~matplotlib.lines.Line2D` or None

Horizontal line at 0 if *usevlines* is True
None *usevlines* is False.

Other Parameters ---------------- linestyle : `~matplotlib.lines.Line2D` property, optional

The linestyle for plotting the data points.
Only used if *usevlines* is ``False``.

marker : str, default: 'o'

The marker for plotting the data points.
Only used if *usevlines* is ``False``.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Additional parameters are passed to `.Axes.vlines` and
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
passed to `.Axes.plot`.

Notes ----- The cross correlation is performed with `numpy.correlate` with “mode = "full"“.

func AngleSpectrum

func AngleSpectrum(x *py.Object, Fs *py.Object, Fc *py.Object, window *py.Object, padTo *py.Object, sides *py.Object) *py.Object

Plot the angle spectrum.

Compute the angle spectrum (wrapped phase spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal.

Parameters ---------- x : 1-D array or sequence

Array or sequence containing the data.

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the *n* parameter
in the call to `~numpy.fft.fft`.  The default is None, which sets *pad_to*
equal to the length of the input signal (i.e. no padding).

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

Returns ------- spectrum : 1-D array

The values for the angle spectrum in radians (real valued).

freqs : 1-D array

The frequencies corresponding to the elements in *spectrum*.

line : `~matplotlib.lines.Line2D`

The line created by this function.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

phase_spectrum

Plots the unwrapped version of this function.

specgram

Can plot the angle spectrum of segments within the signal in a
colormap.

func Annotate

func Annotate(text *py.Object, xy *py.Object, xytext *py.Object, xycoords *py.Object, textcoords *py.Object, arrowprops *py.Object, annotationClip *py.Object) *py.Object

Annotate the point *xy* with text *text*.

In the simplest form, the text is placed at *xy*.

Optionally, the text can be displayed in another position *xytext*. An arrow pointing from the text to the annotated point *xy* can then be added by defining *arrowprops*.

Parameters ---------- text : str

The text of the annotation.

xy : (float, float)

The point *(x, y)* to annotate. The coordinate system is determined
by *xycoords*.

xytext : (float, float), default: *xy*

The position *(x, y)* to place the text at. The coordinate system
is determined by *textcoords*.

xycoords : single or two-tuple of str or `.Artist` or `.Transform` or callable, default: 'data'

The coordinate system that *xy* is given in. The following types
of values are supported:

- One of the following strings:

  ==================== ============================================
  Value                Description
  ==================== ============================================
  'figure points'      Points from the lower left of the figure
  'figure pixels'      Pixels from the lower left of the figure
  'figure fraction'    Fraction of figure from lower left
  'subfigure points'   Points from the lower left of the subfigure
  'subfigure pixels'   Pixels from the lower left of the subfigure
  'subfigure fraction' Fraction of subfigure from lower left
  'axes points'        Points from lower left corner of axes
  'axes pixels'        Pixels from lower left corner of axes
  'axes fraction'      Fraction of axes from lower left
  'data'               Use the coordinate system of the object
                       being annotated (default)
  'polar'              *(theta, r)* if not native 'data'
                       coordinates
  ==================== ============================================

  Note that 'subfigure pixels' and 'figure pixels' are the same
  for the parent figure, so users who want code that is usable in
  a subfigure can use 'subfigure pixels'.

- An `.Artist`: *xy* is interpreted as a fraction of the artist's
  `~matplotlib.transforms.Bbox`. E.g. *(0, 0)* would be the lower
  left corner of the bounding box and *(0.5, 1)* would be the
  center top of the bounding box.

- A `.Transform` to transform *xy* to screen coordinates.

- A function with one of the following signatures::

    def transform(renderer) -> Bbox
    def transform(renderer) -> Transform

  where *renderer* is a `.RendererBase` subclass.

  The result of the function is interpreted like the `.Artist` and
  `.Transform` cases above.

- A tuple *(xcoords, ycoords)* specifying separate coordinate
  systems for *x* and *y*. *xcoords* and *ycoords* must each be
  of one of the above described types.

See :ref:`plotting-guide-annotation` for more details.

textcoords : single or two-tuple of str or `.Artist` or `.Transform` or callable, default: value of *xycoords*

The coordinate system that *xytext* is given in.

All *xycoords* values are valid as well as the following strings:

=================   =================================================
Value               Description
=================   =================================================
'offset points'     Offset, in points, from the *xy* value
'offset pixels'     Offset, in pixels, from the *xy* value
'offset fontsize'   Offset, relative to fontsize, from the *xy* value
=================   =================================================

arrowprops : dict, optional

The properties used to draw a `.FancyArrowPatch` arrow between the
positions *xy* and *xytext*.  Defaults to None, i.e. no arrow is
drawn.

For historical reasons there are two different ways to specify
arrows, "simple" and "fancy":

**Simple arrow:**

If *arrowprops* does not contain the key 'arrowstyle' the
allowed keys are:

==========  =================================================
Key         Description
==========  =================================================
width       The width of the arrow in points
headwidth   The width of the base of the arrow head in points
headlength  The length of the arrow head in points
shrink      Fraction of total length to shrink from both ends
?           Any `.FancyArrowPatch` property
==========  =================================================

The arrow is attached to the edge of the text box, the exact
position (corners or centers) depending on where it's pointing to.

**Fancy arrow:**

This is used if 'arrowstyle' is provided in the *arrowprops*.

Valid keys are the following `.FancyArrowPatch` parameters:

===============  ===================================
Key              Description
===============  ===================================
arrowstyle       The arrow style
connectionstyle  The connection style
relpos           See below; default is (0.5, 0.5)
patchA           Default is bounding box of the text
patchB           Default is None
shrinkA          Default is 2 points
shrinkB          Default is 2 points
mutation_scale   Default is text size (in points)
mutation_aspect  Default is 1
?                Any `.FancyArrowPatch` property
===============  ===================================

The exact starting point position of the arrow is defined by
*relpos*. It's a tuple of relative coordinates of the text box,
where (0, 0) is the lower left corner and (1, 1) is the upper
right corner. Values <0 and >1 are supported and specify points
outside the text box. By default (0.5, 0.5), so the starting point
is centered in the text box.

annotation_clip : bool or None, default: None

Whether to clip (i.e. not draw) the annotation when the annotation
point *xy* is outside the axes area.

- If *True*, the annotation will be clipped when *xy* is outside
  the axes.
- If *False*, the annotation will always be drawn.
- If *None*, the annotation will be clipped when *xy* is outside
  the axes and *xycoords* is 'data'.

**kwargs

Additional kwargs are passed to `.Text`.

Returns ------- `.Annotation`

See Also -------- :ref:`plotting-guide-annotation`

func Arrow

func Arrow(x *py.Object, y *py.Object, dx *py.Object, dy *py.Object) *py.Object

Add an arrow to the Axes.

This draws an arrow from “(x, y)“ to “(x+dx, y+dy)“.

Parameters ---------- x, y : float

The x and y coordinates of the arrow base.

dx, dy : float

The length of the arrow along x and y direction.

width : float, default: 0.001

Width of full arrow tail.

length_includes_head : bool, default: False

True if head is to be counted in calculating the length.

head_width : float or None, default: 3*width

Total width of the full arrow head.

head_length : float or None, default: 1.5*head_width

Length of arrow head.

shape : {'full', 'left', 'right'}, default: 'full'

Draw the left-half, right-half, or full arrow.

overhang : float, default: 0

Fraction that the arrow is swept back (0 overhang means
triangular shape). Can be negative or greater than one.

head_starts_at_zero : bool, default: False

If True, the head starts being drawn at coordinate 0
instead of ending at coordinate 0.

**kwargs

`.Patch` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: unknown
animated: bool
antialiased or aa: bool or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: `~matplotlib.figure.Figure`
fill: bool
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float or None
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
zorder: float

Returns ------- `.FancyArrow`

The created `.FancyArrow` object.

Notes ----- The resulting arrow is affected by the Axes aspect ratio and limits. This may produce an arrow whose head is not square with its stem. To create an arrow whose head is square with its stem, use :meth:`annotate` for example:

>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0), ... arrowprops=dict(arrowstyle="->"))

func Autoscale

func Autoscale(enable *py.Object, axis *py.Object, tight *py.Object) *py.Object

Autoscale the axis view to the data (toggle).

Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling on the specified axis or Axes.

Parameters ---------- enable : bool or None, default: True

True turns autoscaling on, False turns it off.
None leaves the autoscaling state unchanged.

axis : {'both', 'x', 'y'}, default: 'both'

The axis on which to operate.  (For 3D Axes, *axis* can also be set
to 'z', and 'both' refers to all three axes.)

tight : bool or None, default: None

If True, first set the margins to zero.  Then, this argument is
forwarded to `~.axes.Axes.autoscale_view` (regardless of
its value); see the description of its behavior there.

func Autumn

func Autumn() *py.Object

Set the colormap to 'autumn'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Axes

func Axes(arg *py.Object) *py.Object

Add an Axes to the current figure and make it the current Axes.

Call signatures::

plt.axes()
plt.axes(rect, projection=None, polar=False, **kwargs)
plt.axes(ax)

Parameters ---------- arg : None or 4-tuple

The exact behavior of this function depends on the type:

- *None*: A new full window Axes is added using
  ``subplot(**kwargs)``.
- 4-tuple of floats *rect* = ``(left, bottom, width, height)``.
  A new Axes is added with dimensions *rect* in normalized
  (0, 1) units using `~.Figure.add_axes` on the current figure.

projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, optional

The projection type of the `~.axes.Axes`. *str* is the name of
a custom projection, see `~matplotlib.projections`. The default
None results in a 'rectilinear' projection.

polar : bool, default: False

If True, equivalent to projection='polar'.

sharex, sharey : `~matplotlib.axes.Axes`, optional

Share the x or y `~matplotlib.axis` with sharex and/or sharey.
The axis will have the same limits, ticks, and scale as the axis
of the shared Axes.

label : str

A label for the returned Axes.

Returns ------- `~.axes.Axes`, or a subclass of `~.axes.Axes`

The returned axes class depends on the projection used. It is
`~.axes.Axes` if rectilinear projection is used and
`.projections.polar.PolarAxes` if polar projection is used.

Other Parameters ---------------- **kwargs

This method also takes the keyword arguments for
the returned Axes class. The keyword arguments for the
rectilinear Axes class `~.axes.Axes` can be found in
the following table but there might also be other keyword
arguments if another projection is used, see the actual Axes
class.

Properties:
adjustable: {'box', 'datalim'}
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
anchor: (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', ...}
animated: bool
aspect: {'auto', 'equal'} or float
autoscale_on: bool
autoscalex_on: unknown
autoscaley_on: unknown
axes_locator: Callable[[Axes, Renderer], Bbox]
axisbelow: bool or 'line'
box_aspect: float or None
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
facecolor or fc: color
figure: `~matplotlib.figure.Figure`
frame_on: bool
gid: str
in_layout: bool
label: object
mouseover: bool
navigate: bool
navigate_mode: unknown
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
position: [left, bottom, width, height] or `~matplotlib.transforms.Bbox`
prop_cycle: `~cycler.Cycler`
rasterization_zorder: float or None
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
subplotspec: unknown
title: str
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
xbound: (lower: float, upper: float)
xlabel: str
xlim: (left: float, right: float)
xmargin: float greater than -0.5
xscale: unknown
xticklabels: unknown
xticks: unknown
ybound: (lower: float, upper: float)
ylabel: str
ylim: (bottom: float, top: float)
ymargin: float greater than -0.5
yscale: unknown
yticklabels: unknown
yticks: unknown
zorder: float

See Also -------- .Figure.add_axes .pyplot.subplot .Figure.add_subplot .Figure.subplots .pyplot.subplots

Examples -------- ::

# Creating a new full window Axes
plt.axes()

# Creating a new Axes with specified dimensions and a grey background
plt.axes((left, bottom, width, height), facecolor='grey')

func Axhline

func Axhline(y *py.Object, xmin *py.Object, xmax *py.Object) *py.Object

Add a horizontal line across the Axes.

Parameters ---------- y : float, default: 0

y position in data coordinates of the horizontal line.

xmin : float, default: 0

Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

xmax : float, default: 1

Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

Returns ------- `~matplotlib.lines.Line2D`

Other Parameters ---------------- **kwargs

Valid keyword arguments are `.Line2D` properties, except for
'transform':

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- hlines : Add horizontal lines in data coordinates. axhspan : Add a horizontal span (rectangle) across the axis. axline : Add a line with an arbitrary slope.

Examples -------- * draw a thick red hline at 'y' = 0 that spans the xrange::

>>> axhline(linewidth=4, color='r')

* draw a default hline at 'y' = 1 that spans the xrange::

	>>> axhline(y=1)

  - draw a default hline at 'y' = .5 that spans the middle half of
    the xrange::

    >>> axhline(y=.5, xmin=0.25, xmax=0.75)

func Axhspan

func Axhspan(ymin *py.Object, ymax *py.Object, xmin *py.Object, xmax *py.Object) *py.Object

Add a horizontal span (rectangle) across the Axes.

The rectangle spans from *ymin* to *ymax* vertically, and, by default, the whole x-axis horizontally. The x-span can be set using *xmin* (default: 0) and *xmax* (default: 1) which are in axis units; e.g. “xmin = 0.5“ always refers to the middle of the x-axis regardless of the limits set by `~.Axes.set_xlim`.

Parameters ---------- ymin : float

Lower y-coordinate of the span, in data units.

ymax : float

Upper y-coordinate of the span, in data units.

xmin : float, default: 0

Lower x-coordinate of the span, in x-axis (0-1) units.

xmax : float, default: 1

Upper x-coordinate of the span, in x-axis (0-1) units.

Returns ------- `~matplotlib.patches.Polygon`

Horizontal span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters ---------------- **kwargs : `~matplotlib.patches.Polygon` properties

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
closed: bool
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: `~matplotlib.figure.Figure`
fill: bool
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float or None
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
xy: (N, 2) array-like
zorder: float

See Also -------- axvspan : Add a vertical span across the Axes.

func Axis

func Axis(arg *py.Object) *py.Object

Convenience method to get or set some axis properties.

Call signatures::

xmin, xmax, ymin, ymax = axis()
xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
xmin, xmax, ymin, ymax = axis(option)
xmin, xmax, ymin, ymax = axis(**kwargs)

Parameters ---------- xmin, xmax, ymin, ymax : float, optional

The axis limits to be set.  This can also be achieved using ::

    ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

option : bool or str

If a bool, turns axis lines and labels on or off. If a string,
possible values are:

================ ===========================================================
Value            Description
================ ===========================================================
'off' or `False` Hide all axis decorations, i.e. axis labels, spines,
                 tick marks, tick labels, and grid lines.
                 This is the same as `~.Axes.set_axis_off()`.
'on' or `True`   Do not hide all axis decorations, i.e. axis labels, spines,
                 tick marks, tick labels, and grid lines.
                 This is the same as `~.Axes.set_axis_on()`.
'equal'          Set equal scaling (i.e., make circles circular) by
                 changing the axis limits. This is the same as
                 ``ax.set_aspect('equal', adjustable='datalim')``.
                 Explicit data limits may not be respected in this case.
'scaled'         Set equal scaling (i.e., make circles circular) by
                 changing dimensions of the plot box. This is the same as
                 ``ax.set_aspect('equal', adjustable='box', anchor='C')``.
                 Additionally, further autoscaling will be disabled.
'tight'          Set limits just large enough to show all data, then
                 disable further autoscaling.
'auto'           Automatic scaling (fill plot box with data).
'image'          'scaled' with axis limits equal to data limits.
'square'         Square plot; similar to 'scaled', but initially forcing
                 ``xmax-xmin == ymax-ymin``.
================ ===========================================================

emit : bool, default: True

Whether observers are notified of the axis limit change.
This option is passed on to `~.Axes.set_xlim` and
`~.Axes.set_ylim`.

Returns ------- xmin, xmax, ymin, ymax : float

The axis limits.

See Also -------- matplotlib.axes.Axes.set_xlim matplotlib.axes.Axes.set_ylim

Notes ----- For 3D axes, this method additionally takes *zmin*, *zmax* as parameters and likewise returns them.

func Axline

func Axline(xy1 *py.Object, xy2 *py.Object) *py.Object

Add an infinitely long straight line.

The line can be defined either by two points *xy1* and *xy2*, or by one point *xy1* and a *slope*.

This draws a straight line "on the screen", regardless of the x and y scales, and is thus also suitable for drawing exponential decays in semilog plots, power laws in loglog plots, etc. However, *slope* should only be used with linear scales; It has no clear meaning for all other scales, and thus the behavior is undefined. Please specify the line using the points *xy1*, *xy2* for non-linear scales.

The *transform* keyword argument only applies to the points *xy1*, *xy2*. The *slope* (if given) is always in data coordinates. This can be used e.g. with “ax.transAxes“ for drawing grid lines with a fixed slope.

Parameters ---------- xy1, xy2 : (float, float)

Points for the line to pass through.
Either *xy2* or *slope* has to be given.

slope : float, optional

The slope of the line. Either *xy2* or *slope* has to be given.

Returns ------- `.AxLine`

Other Parameters ---------------- **kwargs

Valid kwargs are `.Line2D` properties

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- axhline : for horizontal lines axvline : for vertical lines

Examples -------- Draw a thick red line passing through (0, 0) and (1, 1)::

>>> axline((0, 0), (1, 1), linewidth=4, color='r')

func Axvline

func Axvline(x *py.Object, ymin *py.Object, ymax *py.Object) *py.Object

Add a vertical line across the Axes.

Parameters ---------- x : float, default: 0

x position in data coordinates of the vertical line.

ymin : float, default: 0

Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

ymax : float, default: 1

Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

Returns ------- `~matplotlib.lines.Line2D`

Other Parameters ---------------- **kwargs

Valid keyword arguments are `.Line2D` properties, except for
'transform':

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- vlines : Add vertical lines in data coordinates. axvspan : Add a vertical span (rectangle) across the axis. axline : Add a line with an arbitrary slope.

Examples -------- * draw a thick red vline at *x* = 0 that spans the yrange::

>>> axvline(linewidth=4, color='r')

* draw a default vline at *x* = 1 that spans the yrange::

	>>> axvline(x=1)

  - draw a default vline at *x* = .5 that spans the middle half of
    the yrange::

    >>> axvline(x=.5, ymin=0.25, ymax=0.75)

func Axvspan

func Axvspan(xmin *py.Object, xmax *py.Object, ymin *py.Object, ymax *py.Object) *py.Object

Add a vertical span (rectangle) across the Axes.

The rectangle spans from *xmin* to *xmax* horizontally, and, by default, the whole y-axis vertically. The y-span can be set using *ymin* (default: 0) and *ymax* (default: 1) which are in axis units; e.g. “ymin = 0.5“ always refers to the middle of the y-axis regardless of the limits set by `~.Axes.set_ylim`.

Parameters ---------- xmin : float

Lower x-coordinate of the span, in data units.

xmax : float

Upper x-coordinate of the span, in data units.

ymin : float, default: 0

Lower y-coordinate of the span, in y-axis units (0-1).

ymax : float, default: 1

Upper y-coordinate of the span, in y-axis units (0-1).

Returns ------- `~matplotlib.patches.Polygon`

Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters ---------------- **kwargs : `~matplotlib.patches.Polygon` properties

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
closed: bool
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: `~matplotlib.figure.Figure`
fill: bool
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float or None
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
xy: (N, 2) array-like
zorder: float

See Also -------- axhspan : Add a horizontal span across the Axes.

Examples -------- Draw a vertical, green, translucent rectangle from x = 1.25 to x = 1.55 that spans the yrange of the Axes.

>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

func Bar

func Bar(x *py.Object, height *py.Object, width *py.Object, bottom *py.Object) *py.Object

Make a bar plot.

The bars are positioned at *x* with the given *align*\ment. Their dimensions are given by *height* and *width*. The vertical baseline is *bottom* (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for each bar.

Parameters ---------- x : float or array-like

The x coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.

height : float or array-like

The height(s) of the bars.

Note that if *bottom* has units (e.g. datetime), *height* should be in
units that are a difference from the value of *bottom* (e.g. timedelta).

width : float or array-like, default: 0.8

The width(s) of the bars.

Note that if *x* has units (e.g. datetime), then *width* should be in
units that are a difference (e.g. timedelta) around the *x* values.

bottom : float or array-like, default: 0

The y coordinate(s) of the bottom side(s) of the bars.

Note that if *bottom* has units, then the y-axis will get a Locator and
Formatter appropriate for the units (e.g. dates, or categorical).

align : {'center', 'edge'}, default: 'center'

Alignment of the bars to the *x* coordinates:

- 'center': Center the base on the *x* positions.
- 'edge': Align the left edges of the bars with the *x* positions.

To align the bars on the right edge pass a negative *width* and
``align='edge'``.

Returns ------- `.BarContainer`

Container with all the bars and optionally errorbars.

Other Parameters ---------------- color : color or list of color, optional

The colors of the bar faces.

edgecolor : color or list of color, optional

The colors of the bar edges.

linewidth : float or array-like, optional

Width of the bar edge(s). If 0, don't draw edges.

tick_label : str or list of str, optional

The tick labels of the bars.
Default: None (Use default numeric labels.)

label : str or list of str, optional

A single label is attached to the resulting `.BarContainer` as a
label for the whole dataset.
If a list is provided, it must be the same length as *x* and
labels the individual bars. Repeated labels are not de-duplicated
and will cause repeated label entries, so this is best used when
bars also differ in style (e.g., by passing a list to *color*.)

xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional

If not *None*, add horizontal / vertical errorbars to the bar tips.
The values are +/- sizes relative to the data:

- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2, N): Separate - and + values for each bar. First row
  contains the lower errors, the second row contains the upper
  errors.
- *None*: No errorbar. (Default)

See :doc:`/gallery/statistics/errorbar_features` for an example on
the usage of *xerr* and *yerr*.

ecolor : color or list of color, default: 'black'

The line color of the errorbars.

capsize : float, default: :rc:`errorbar.capsize`

The length of the error bar caps in points.

error_kw : dict, optional

Dictionary of keyword arguments to be passed to the
`~.Axes.errorbar` method. Values of *ecolor* or *capsize* defined
here take precedence over the independent keyword arguments.

log : bool, default: False

If *True*, set the y-axis to be log scale.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs : `.Rectangle` properties

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
angle: unknown
animated: bool
antialiased or aa: bool or None
bounds: (left, bottom, width, height)
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: `~matplotlib.figure.Figure`
fill: bool
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
height: unknown
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float or None
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
width: unknown
x: unknown
xy: (float, float)
y: unknown
zorder: float

See Also -------- barh : Plot a horizontal bar plot.

Notes ----- Stacked bars can be achieved by passing individual *bottom* values per bar. See :doc:`/gallery/lines_bars_and_markers/bar_stacked`.

func BarLabel

func BarLabel(container *py.Object, labels *py.Object) *py.Object

Label a bar plot.

Adds labels to bars in the given `.BarContainer`. You may need to adjust the axis limits to fit the labels.

Parameters ---------- container : `.BarContainer`

Container with all the bars and optionally errorbars, likely
returned from `.bar` or `.barh`.

labels : array-like, optional

A list of label texts, that should be displayed. If not given, the
label texts will be the data values formatted with *fmt*.

fmt : str or callable, default: '%g'

An unnamed %-style or {}-style format string for the label or a
function to call with the value as the first argument.
When *fmt* is a string and can be interpreted in both formats,
%-style takes precedence over {}-style.

.. versionadded:: 3.7
   Support for {}-style format string and callables.

label_type : {'edge', 'center'}, default: 'edge'

The label type. Possible values:

- 'edge': label placed at the end-point of the bar segment, and the
  value displayed will be the position of that end-point.
- 'center': label placed in the center of the bar segment, and the
  value displayed will be the length of that segment.
  (useful for stacked bars, i.e.,
  :doc:`/gallery/lines_bars_and_markers/bar_label_demo`)

padding : float, default: 0

Distance of label from the end of the bar, in points.

**kwargs

Any remaining keyword arguments are passed through to
`.Axes.annotate`. The alignment parameters (
*horizontalalignment* / *ha*, *verticalalignment* / *va*) are
not supported because the labels are automatically aligned to
the bars.

Returns ------- list of `.Annotation`

A list of `.Annotation` instances for the labels.

func Barbs

func Barbs(__llgo_va_list ...interface{}) *py.Object

Plot a 2D field of barbs.

Call signature::

barbs([X, Y], U, V, [C], **kwargs)

Where *X*, *Y* define the barb locations, *U*, *V* define the barb directions, and *C* optionally sets the color.

All arguments may be 1D or 2D. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present.

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observations, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows, which give vector magnitude by the length of the arrow, the barbs give more quantitative information about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude, as show schematically below::

:                   /\    \
:                  /  \    \
:                 /    \    \    \
:                /      \    \    \
:               ------------------------------

The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

See also https://en.wikipedia.org/wiki/Wind_barb.

Parameters ---------- X, Y : 1D or 2D array-like, optional

The x and y coordinates of the barb locations. See *pivot* for how the
barbs are drawn to the x, y positions.

If not given, they will be generated as a uniform integer meshgrid based
on the dimensions of *U* and *V*.

If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D
using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``
must match the column and row dimensions of *U* and *V*.

U, V : 1D or 2D array-like

The x and y components of the barb shaft.

C : 1D or 2D array-like, optional

Numeric data that defines the barb colors by colormapping via *norm* and
*cmap*.

This does not support explicit colors. If you want to set colors directly,
use *barbcolor* instead.

length : float, default: 7

Length of the barb in points; the other parts of the barb
are scaled against this.

pivot : {'tip', 'middle'} or float, default: 'tip'

The part of the arrow that is anchored to the *X*, *Y* grid. The barb
rotates about this point. This can also be a number, which shifts the
start of the barb that many points away from grid point.

barbcolor : color or color sequence

The color of all parts of the barb except for the flags.  This parameter
is analogous to the *edgecolor* parameter for polygons, which can be used
instead. However this parameter will override facecolor.

flagcolor : color or color sequence

The color of any flags on the barb.  This parameter is analogous to the
*facecolor* parameter for polygons, which can be used instead. However,
this parameter will override facecolor.  If this is not set (and *C* has
not either) then *flagcolor* will be set to match *barbcolor* so that the
barb has a uniform color. If *C* has been set, *flagcolor* has no effect.

sizes : dict, optional

A dictionary of coefficients specifying the ratio of a given
feature to the length of the barb. Only those values one wishes to
override need to be included.  These features include:

- 'spacing' - space between features (flags, full/half barbs)
- 'height' - height (distance from shaft to top) of a flag or full barb
- 'width' - width of a flag, twice the width of a full barb
- 'emptybarb' - radius of the circle used for low magnitudes

fill_empty : bool, default: False

Whether the empty barbs (circles) that are drawn should be filled with
the flag color.  If they are not filled, the center is transparent.

rounding : bool, default: True

Whether the vector magnitude should be rounded when allocating barb
components.  If True, the magnitude is rounded to the nearest multiple
of the half-barb increment.  If False, the magnitude is simply truncated
to the next lowest multiple.

barb_increments : dict, optional

A dictionary of increments specifying values to associate with
different parts of the barb. Only those values one wishes to
override need to be included.

- 'half' - half barbs (Default is 5)
- 'full' - full barbs (Default is 10)
- 'flag' - flags (default is 50)

flip_barb : bool or array-like of bool, default: False

Whether the lines and flags should point opposite to normal.
Normal behavior is for the barbs and lines to point right (comes from wind
barbs having these features point towards low pressure in the Northern
Hemisphere).

A single value is applied to all barbs. Individual barbs can be flipped by
passing a bool array of the same size as *U* and *V*.

Returns ------- barbs : `~matplotlib.quiver.Barbs`

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs

The barbs can further be customized using `.PolyCollection` keyword
arguments:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

func Barh

func Barh(y *py.Object, width *py.Object, height *py.Object, left *py.Object) *py.Object

Make a horizontal bar plot.

The bars are positioned at *y* with the given *align*\ment. Their dimensions are given by *width* and *height*. The horizontal baseline is *left* (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for each bar.

Parameters ---------- y : float or array-like

The y coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.

width : float or array-like

The width(s) of the bars.

Note that if *left* has units (e.g. datetime), *width* should be in
units that are a difference from the value of *left* (e.g. timedelta).

height : float or array-like, default: 0.8

The heights of the bars.

Note that if *y* has units (e.g. datetime), then *height* should be in
units that are a difference (e.g. timedelta) around the *y* values.

left : float or array-like, default: 0

The x coordinates of the left side(s) of the bars.

Note that if *left* has units, then the x-axis will get a Locator and
Formatter appropriate for the units (e.g. dates, or categorical).

align : {'center', 'edge'}, default: 'center'

Alignment of the base to the *y* coordinates*:

- 'center': Center the bars on the *y* positions.
- 'edge': Align the bottom edges of the bars with the *y*
  positions.

To align the bars on the top edge pass a negative *height* and
``align='edge'``.

Returns ------- `.BarContainer`

Container with all the bars and optionally errorbars.

Other Parameters ---------------- color : color or list of color, optional

The colors of the bar faces.

edgecolor : color or list of color, optional

The colors of the bar edges.

linewidth : float or array-like, optional

Width of the bar edge(s). If 0, don't draw edges.

tick_label : str or list of str, optional

The tick labels of the bars.
Default: None (Use default numeric labels.)

label : str or list of str, optional

A single label is attached to the resulting `.BarContainer` as a
label for the whole dataset.
If a list is provided, it must be the same length as *y* and
labels the individual bars. Repeated labels are not de-duplicated
and will cause repeated label entries, so this is best used when
bars also differ in style (e.g., by passing a list to *color*.)

xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional

If not *None*, add horizontal / vertical errorbars to the bar tips.
The values are +/- sizes relative to the data:

- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2, N): Separate - and + values for each bar. First row
  contains the lower errors, the second row contains the upper
  errors.
- *None*: No errorbar. (default)

See :doc:`/gallery/statistics/errorbar_features` for an example on
the usage of *xerr* and *yerr*.

ecolor : color or list of color, default: 'black'

The line color of the errorbars.

capsize : float, default: :rc:`errorbar.capsize`

The length of the error bar caps in points.

error_kw : dict, optional

Dictionary of keyword arguments to be passed to the
`~.Axes.errorbar` method. Values of *ecolor* or *capsize* defined
here take precedence over the independent keyword arguments.

log : bool, default: False

If ``True``, set the x-axis to be log scale.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs : `.Rectangle` properties

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
angle: unknown
animated: bool
antialiased or aa: bool or None
bounds: (left, bottom, width, height)
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: `~matplotlib.figure.Figure`
fill: bool
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
height: unknown
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float or None
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
width: unknown
x: unknown
xy: (float, float)
y: unknown
zorder: float

See Also -------- bar : Plot a vertical bar plot.

Notes ----- Stacked bars can be achieved by passing individual *left* values per bar. See :doc:`/gallery/lines_bars_and_markers/horizontal_barchart_distribution`.

func Bone

func Bone() *py.Object

Set the colormap to 'bone'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Box

func Box(on *py.Object) *py.Object

Turn the axes box on or off on the current axes.

Parameters ---------- on : bool or None

The new `~matplotlib.axes.Axes` box state. If ``None``, toggle
the state.

See Also -------- :meth:`matplotlib.axes.Axes.set_frame_on` :meth:`matplotlib.axes.Axes.get_frame_on`

func Boxplot

func Boxplot(x *py.Object, notch *py.Object, sym *py.Object, vert *py.Object, whis *py.Object, positions *py.Object, widths *py.Object, patchArtist *py.Object, bootstrap *py.Object, usermedians *py.Object, confIntervals *py.Object, meanline *py.Object, showmeans *py.Object, showcaps *py.Object, showbox *py.Object, showfliers *py.Object, boxprops *py.Object, labels *py.Object, flierprops *py.Object, medianprops *py.Object, meanprops *py.Object, capprops *py.Object, whiskerprops *py.Object, manageTicks *py.Object, autorange *py.Object, zorder *py.Object, capwidths *py.Object) *py.Object

Draw a box and whisker plot.

The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a line at the median. The whiskers extend from the box to the farthest data point lying within 1.5x the inter-quartile range (IQR) from the box. Flier points are those past the end of the whiskers. See https://en.wikipedia.org/wiki/Box_plot for reference.

.. code-block:: none

     Q1-1.5IQR   Q1   median  Q3   Q3+1.5IQR
                  |-----:-----|
  o      |--------|     :     |--------|    o  o
                  |-----:-----|
flier             <----------->            fliers
                       IQR

Parameters ---------- x : Array or a sequence of vectors.

The input data.  If a 2D array, a boxplot is drawn for each column
in *x*.  If a sequence of 1D arrays, a boxplot is drawn for each
array in *x*.

notch : bool, default: False

Whether to draw a notched boxplot (`True`), or a rectangular
boxplot (`False`).  The notches represent the confidence interval
(CI) around the median.  The documentation for *bootstrap*
describes how the locations of the notches are computed by
default, but their locations may also be overridden by setting the
*conf_intervals* parameter.

.. note::

    In cases where the values of the CI are less than the
    lower quartile or greater than the upper quartile, the
    notches will extend beyond the box, giving it a
    distinctive "flipped" appearance. This is expected
    behavior and consistent with other statistical
    visualization packages.

sym : str, optional

The default symbol for flier points.  An empty string ('') hides
the fliers.  If `None`, then the fliers default to 'b+'.  More
control is provided by the *flierprops* parameter.

vert : bool, default: True

If `True`, draws vertical boxes.
If `False`, draw horizontal boxes.

whis : float or (float, float), default: 1.5

The position of the whiskers.

If a float, the lower whisker is at the lowest datum above
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
third quartiles.  The default value of ``whis = 1.5`` corresponds
to Tukey's original definition of boxplots.

If a pair of floats, they indicate the percentiles at which to
draw the whiskers (e.g., (5, 95)).  In particular, setting this to
(0, 100) results in whiskers covering the whole range of the data.

In the edge case where ``Q1 == Q3``, *whis* is automatically set
to (0, 100) (cover the whole range of the data) if *autorange* is
True.

Beyond the whiskers, data are considered outliers and are plotted
as individual points.

bootstrap : int, optional

Specifies whether to bootstrap the confidence intervals
around the median for notched boxplots. If *bootstrap* is
None, no bootstrapping is performed, and notches are
calculated using a Gaussian-based asymptotic approximation
(see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
Kendall and Stuart, 1967). Otherwise, bootstrap specifies
the number of times to bootstrap the median to determine its
95% confidence intervals. Values between 1000 and 10000 are
recommended.

usermedians : 1D array-like, optional

A 1D array-like of length ``len(x)``.  Each entry that is not
`None` forces the value of the median for the corresponding
dataset.  For entries that are `None`, the medians are computed
by Matplotlib as normal.

conf_intervals : array-like, optional

A 2D array-like of shape ``(len(x), 2)``.  Each entry that is not
None forces the location of the corresponding notch (which is
only drawn if *notch* is `True`).  For entries that are `None`,
the notches are computed by the method specified by the other
parameters (e.g., *bootstrap*).

positions : array-like, optional

The positions of the boxes. The ticks and limits are
automatically set to match the positions. Defaults to
``range(1, N+1)`` where N is the number of boxes to be drawn.

widths : float or array-like

The widths of the boxes.  The default is 0.5, or ``0.15*(distance
between extreme positions)``, if that is smaller.

patch_artist : bool, default: False

If `False` produces boxes with the Line2D artist. Otherwise,
boxes are drawn with Patch artists.

labels : sequence, optional

Labels for each dataset (one per dataset).

manage_ticks : bool, default: True

If True, the tick locations and labels will be adjusted to match
the boxplot positions.

autorange : bool, default: False

When `True` and the data are distributed such that the 25th and
75th percentiles are equal, *whis* is set to (0, 100) such
that the whisker ends are at the minimum and maximum of the data.

meanline : bool, default: False

If `True` (and *showmeans* is `True`), will try to render the
mean as a line spanning the full width of the box according to
*meanprops* (see below).  Not recommended if *shownotches* is also
True.  Otherwise, means will be shown as points.

zorder : float, default: “Line2D.zorder = 2“

The zorder of the boxplot.

Returns ------- dict

A dictionary mapping each component of the boxplot to a list
of the `.Line2D` instances created. That dictionary has the
following keys (assuming vertical boxplots):

- ``boxes``: the main body of the boxplot showing the
  quartiles and the median's confidence intervals if
  enabled.

- ``medians``: horizontal lines at the median of each box.

- ``whiskers``: the vertical lines extending to the most
  extreme, non-outlier data points.

- ``caps``: the horizontal lines at the ends of the
  whiskers.

- ``fliers``: points representing data that extend beyond
  the whiskers (fliers).

- ``means``: points or lines representing the means.

Other Parameters ---------------- showcaps : bool, default: True

Show the caps on the ends of whiskers.

showbox : bool, default: True

Show the central box.

showfliers : bool, default: True

Show the outliers beyond the caps.

showmeans : bool, default: False

Show the arithmetic means.

capprops : dict, default: None

The style of the caps.

capwidths : float or array, default: None

The widths of the caps.

boxprops : dict, default: None

The style of the box.

whiskerprops : dict, default: None

The style of the whiskers.

flierprops : dict, default: None

The style of the fliers.

medianprops : dict, default: None

The style of the median.

meanprops : dict, default: None

The style of the mean.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

See Also -------- violinplot : Draw an estimate of the probability density function.

func BrokenBarh

func BrokenBarh(xranges *py.Object, yrange *py.Object) *py.Object

Plot a horizontal sequence of rectangles.

A rectangle is drawn for each element of *xranges*. All rectangles have the same vertical position and size defined by *yrange*.

Parameters ---------- xranges : sequence of tuples (*xmin*, *xwidth*)

The x-positions and extents of the rectangles. For each tuple
(*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
*xwidth*.

yrange : (*ymin*, *yheight*)

The y-position and extent for all the rectangles.

Returns ------- `~.collections.PolyCollection`

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs : `.PolyCollection` properties

Each *kwarg* can be either a single argument applying to all
rectangles, e.g.::

    facecolors='black'

or a sequence of arguments over which is cycled, e.g.::

    facecolors=('black', 'blue')

would create interleaving black and blue rectangles.

Supported keywords:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

func Cast

func Cast(typ *py.Object, val *py.Object) *py.Object

Cast a value to a type.

This returns the value unchanged.  To the type checker this
signals that the return value has the designated type, but at
runtime we intentionally don't check anything (we want this
to be as fast as possible).

func Cla

func Cla() *py.Object

Clear the current axes.

func Clabel

func Clabel(CS *py.Object, levels *py.Object) *py.Object

Label a contour plot.

Adds labels to line contours in given `.ContourSet`.

Parameters ---------- CS : `.ContourSet` instance

Line contours to label.

levels : array-like, optional

A list of level values, that should be labeled. The list must be
a subset of ``CS.levels``. If not given, all levels are labeled.

**kwargs

All other parameters are documented in `~.ContourLabeler.clabel`.

func Clf

func Clf() *py.Object

Clear the current figure.

func Clim

func Clim(vmin *py.Object, vmax *py.Object) *py.Object

Set the color limits of the current image.

If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use `~.ScalarMappable.set_clim` on every image, for example::

for im in gca().get_images():
    im.set_clim(0, 0.5)

func Close

func Close(fig *py.Object) *py.Object

Close a figure window.

Parameters ---------- fig : None or int or str or `.Figure`

The figure to close. There are a number of ways to specify this:

- *None*: the current figure
- `.Figure`: the given `.Figure` instance
- ``int``: a figure number
- ``str``: a figure name
- 'all': all figures

func Cohere

func Cohere(x *py.Object, y *py.Object, NFFT *py.Object, Fs *py.Object, Fc *py.Object, detrend *py.Object, window *py.Object, noverlap *py.Object, padTo *py.Object, sides *py.Object, scaleByFreq *py.Object) *py.Object

Plot the coherence between *x* and *y*.

Coherence is the normalized cross spectral density:

.. math::

C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}

Parameters ---------- Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  This can be different from *NFFT*, which specifies the number
of data points used.  While not increasing the actual resolution of the
spectrum (the minimum distance between resolvable peaks), this can give
more points in the plot, allowing for more detail. This corresponds to
the *n* parameter in the call to `~numpy.fft.fft`. The default is None,
which sets *pad_to* equal to *NFFT*

NFFT : int, default: 256

The number of data points used in each block for the FFT.  A power 2 is
most efficient.  This should *NOT* be used to get zero padding, or the
scaling of the result will be incorrect; use *pad_to* for this instead.

detrend : {'none', 'mean', 'linear'} or callable, default: 'none'

The function applied to each segment before fft-ing, designed to remove
the mean or linear trend.  Unlike in MATLAB, where the *detrend* parameter
is a vector, in Matplotlib it is a function.  The :mod:`~matplotlib.mlab`
module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
but you can use a custom function as well.  You can also use a string to
choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
`.detrend_mean`. 'linear' calls `.detrend_linear`.

scale_by_freq : bool, default: True

Whether the resulting density values should be scaled by the scaling
frequency, which gives density in units of 1/Hz.  This allows for
integration over the returned frequency values.  The default is True for
MATLAB compatibility.

noverlap : int, default: 0 (no overlap)

The number of points of overlap between blocks.

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

Returns ------- Cxy : 1-D array

The coherence vector.

freqs : 1-D array

The frequencies for the elements in *Cxy*.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986)

func Colorbar

func Colorbar(mappable *py.Object, cax *py.Object, ax *py.Object) *py.Object

Add a colorbar to a plot.

Parameters ---------- mappable

The `matplotlib.cm.ScalarMappable` (i.e., `.AxesImage`,
`.ContourSet`, etc.) described by this colorbar.  This argument is
mandatory for the `.Figure.colorbar` method but optional for the
`.pyplot.colorbar` function, which sets the default to the current
image.

Note that one can create a `.ScalarMappable` "on-the-fly" to
generate colorbars not attached to a previously drawn artist, e.g.
::

    fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), ax=ax)

cax : `~matplotlib.axes.Axes`, optional

Axes into which the colorbar will be drawn.  If `None`, then a new
Axes is created and the space for it will be stolen from the Axes(s)
specified in *ax*.

ax : `~matplotlib.axes.Axes` or iterable or `numpy.ndarray` of Axes, optional

The one or more parent Axes from which space for a new colorbar Axes
will be stolen. This parameter is only used if *cax* is not set.

Defaults to the Axes that contains the mappable used to create the
colorbar.

use_gridspec : bool, optional

If *cax* is ``None``, a new *cax* is created as an instance of
Axes.  If *ax* is positioned with a subplotspec and *use_gridspec*
is ``True``, then *cax* is also positioned with a subplotspec.

Returns ------- colorbar : `~matplotlib.colorbar.Colorbar`

Other Parameters ----------------

location : None or {'left', 'right', 'top', 'bottom'}

The location, relative to the parent axes, where the colorbar axes
is created.  It also determines the *orientation* of the colorbar
(colorbars on the left and right are vertical, colorbars at the top
and bottom are horizontal).  If None, the location will come from the
*orientation* if it is set (vertical colorbars on the right, horizontal
ones at the bottom), or default to 'right' if *orientation* is unset.

orientation : None or {'vertical', 'horizontal'}

The orientation of the colorbar.  It is preferable to set the *location*
of the colorbar, as that also determines the *orientation*; passing
incompatible values for *location* and *orientation* raises an exception.

fraction : float, default: 0.15

Fraction of original axes to use for colorbar.

shrink : float, default: 1.0

Fraction by which to multiply the size of the colorbar.

aspect : float, default: 20

Ratio of long to short dimensions.

pad : float, default: 0.05 if vertical, 0.15 if horizontal

Fraction of original axes between colorbar and new image axes.

anchor : (float, float), optional

The anchor point of the colorbar axes.
Defaults to (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.

panchor : (float, float), or *False*, optional

The anchor point of the colorbar parent axes. If *False*, the parent
axes' anchor will be unchanged.
Defaults to (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal.

extend : {'neither', 'both', 'min', 'max'}

Make pointed end(s) for out-of-range values (unless 'neither').  These are
set for a given colormap using the colormap set_under and set_over methods.

extendfrac : {*None*, 'auto', length, lengths}

If set to *None*, both the minimum and maximum triangular colorbar
extensions will have a length of 5% of the interior colorbar length (this
is the default setting).

If set to 'auto', makes the triangular colorbar extensions the same lengths
as the interior boxes (when *spacing* is set to 'uniform') or the same
lengths as the respective adjacent interior boxes (when *spacing* is set to
'proportional').

If a scalar, indicates the length of both the minimum and maximum
triangular colorbar extensions as a fraction of the interior colorbar
length.  A two-element sequence of fractions may also be given, indicating
the lengths of the minimum and maximum colorbar extensions respectively as
a fraction of the interior colorbar length.

extendrect : bool

If *False* the minimum and maximum colorbar extensions will be triangular
(the default).  If *True* the extensions will be rectangular.

spacing : {'uniform', 'proportional'}

For discrete colorbars (`.BoundaryNorm` or contours), 'uniform' gives each
color the same space; 'proportional' makes the space proportional to the
data interval.

ticks : None or list of ticks or Locator

If None, ticks are determined automatically from the input.

format : None or str or Formatter

If None, `~.ticker.ScalarFormatter` is used.
Format strings, e.g., ``"%4.2e"`` or ``"{x:.2e}"``, are supported.
An alternative `~.ticker.Formatter` may be given instead.

drawedges : bool

Whether to draw lines at color boundaries.

label : str

The label on the colorbar's long axis.

boundaries, values : None or a sequence

If unset, the colormap will be displayed on a 0-1 scale.
If sequences, *values* must have a length 1 less than *boundaries*.  For
each region delimited by adjacent entries in *boundaries*, the color mapped
to the corresponding value in values will be used.
Normally only useful for indexed colors (i.e. ``norm=NoNorm()``) or other
unusual circumstances.

Notes ----- If *mappable* is a `~.contour.ContourSet`, its *extend* kwarg is included automatically.

The *shrink* kwarg provides a simple way to scale the colorbar with respect to the axes. Note that if *cax* is specified, it determines the size of the colorbar, and *shrink* and *aspect* are ignored.

For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewers (svg and pdf) render white gaps between segments of the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar can be rendered with overlapping segments::

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However, this has negative consequences in other circumstances, e.g. with semi-transparent images (alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see issue #1188).

func Connect

func Connect(s *py.Object, func_ *py.Object) *py.Object

Bind function *func* to event *s*.

Parameters ---------- s : str

One of the following events ids:

- 'button_press_event'
- 'button_release_event'
- 'draw_event'
- 'key_press_event'
- 'key_release_event'
- 'motion_notify_event'
- 'pick_event'
- 'resize_event'
- 'scroll_event'
- 'figure_enter_event',
- 'figure_leave_event',
- 'axes_enter_event',
- 'axes_leave_event'
- 'close_event'.

func : callable

The callback function to be executed, which must have the
signature::

    def func(event: Event) -> Any

For the location events (button and key press/release), if the
mouse is over the Axes, the ``inaxes`` attribute of the event will
be set to the `~matplotlib.axes.Axes` the event occurs is over, and
additionally, the variables ``xdata`` and ``ydata`` attributes will
be set to the mouse location in data coordinates.  See `.KeyEvent`
and `.MouseEvent` for more info.

.. note::

    If func is a method, this only stores a weak reference to the
    method. Thus, the figure does not influence the lifetime of
    the associated object. Usually, you want to make sure that the
    object is kept alive throughout the lifetime of the figure by
    holding a reference to it.

Returns ------- cid

A connection id that can be used with
`.FigureCanvasBase.mpl_disconnect`.

Examples -------- ::

def on_press(event):
    print('you pressed', event.button, event.xdata, event.ydata)

cid = canvas.mpl_connect('button_press_event', on_press)

func Contour

func Contour(__llgo_va_list ...interface{}) *py.Object

Plot contour lines.

Call signature::

contour([X, Y,] Z, [levels], **kwargs)

`.contour` and `.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions.

Parameters ---------- X, Y : array-like, optional

The coordinates of the values in *Z*.

*X* and *Y* must both be 2D with the same shape as *Z* (e.g.
created via `numpy.meshgrid`), or they must both be 1-D such
that ``len(X) == N`` is the number of columns in *Z* and
``len(Y) == M`` is the number of rows in *Z*.

*X* and *Y* must both be ordered monotonically.

If not given, they are assumed to be integer indices, i.e.
``X = range(N)``, ``Y = range(M)``.

Z : (M, N) array-like

The height values over which the contour is drawn.  Color-mapping is
controlled by *cmap*, *norm*, *vmin*, and *vmax*.

levels : int or array-like, optional

Determines the number and positions of the contour lines / regions.

If an int *n*, use `~matplotlib.ticker.MaxNLocator`, which tries
to automatically choose no more than *n+1* "nice" contour levels
between minimum and maximum numeric values of *Z*.

If array-like, draw contour lines at the specified levels.
The values must be in increasing order.

Returns ------- `~.contour.QuadContourSet`

Other Parameters ---------------- corner_mask : bool, default: :rc:`contour.corner_mask`

Enable/disable corner masking, which only has an effect if *Z* is
a masked array.  If ``False``, any quad touching a masked point is
masked out.  If ``True``, only the triangular corners of quads
nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

colors : color string or sequence of colors, optional

The colors of the levels, i.e. the lines for `.contour` and the
areas for `.contourf`.

The sequence is cycled for the levels in ascending order. If the
sequence is shorter than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of
one-element lists, i.e. ``'red'`` instead of ``['red']`` to color
all levels with the same color. This shortcut does only work for
color strings, not for other ways of specifying colors.

By default (value *None*), the colormap specified by *cmap*
will be used.

alpha : float, default: 1

The alpha blending value, between 0 (transparent) and 1 (opaque).

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *colors* is set.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *colors* is set.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

If *vmin* or *vmax* are not given, the default color scaling is based on
*levels*.

This parameter is ignored if *colors* is set.

origin : {*None*, 'upper', 'lower', 'image'}, default: None

Determines the orientation and exact position of *Z* by specifying
the position of ``Z[0, 0]``.  This is only relevant, if *X*, *Y*
are not given.

- *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner.
- 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner.
- 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left
  corner.
- 'image': Use the value from :rc:`image.origin`.

extent : (x0, x1, y0, y1), optional

If *origin* is not *None*, then *extent* is interpreted as in
`.imshow`: it gives the outer pixel boundaries. In this case, the
position of Z[0, 0] is the center of the pixel, not a corner. If
*origin* is *None*, then (*x0*, *y0*) is the position of Z[0, 0],
and (*x1*, *y1*) is the position of Z[-1, -1].

This argument is ignored if *X* and *Y* are specified in the call
to contour.

locator : ticker.Locator subclass, optional

The locator is used to determine the contour levels if they
are not given explicitly via *levels*.
Defaults to `~.ticker.MaxNLocator`.

extend : {'neither', 'both', 'min', 'max'}, default: 'neither'

Determines the ``contourf``-coloring of values that are outside the
*levels* range.

If 'neither', values outside the *levels* range are not colored.
If 'min', 'max' or 'both', color the values below, above or below
and above the *levels* range.

Values below ``min(levels)`` and above ``max(levels)`` are mapped
to the under/over values of the `.Colormap`. Note that most
colormaps do not have dedicated colors for these by default, so
that the over and under values are the edge values of the colormap.
You may want to set these values explicitly using
`.Colormap.set_under` and `.Colormap.set_over`.

.. note::

    An existing `.QuadContourSet` does not get notified if
    properties of its colormap are changed. Therefore, an explicit
    call `.QuadContourSet.changed()` is needed after modifying the
    colormap. The explicit call can be left out, if a colorbar is
    assigned to the `.QuadContourSet` because it internally calls
    `.QuadContourSet.changed()`.

Example::

    x = np.arange(1, 10)
    y = x.reshape(-1, 1)
    h = x * y

    cs = plt.contourf(h, levels=[10, 30, 50],
        colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both')
    cs.cmap.set_over('red')
    cs.cmap.set_under('blue')
    cs.changed()

xunits, yunits : registered units, optional

Override axis units by specifying an instance of a
:class:`matplotlib.units.ConversionInterface`.

antialiased : bool, optional

Enable antialiasing, overriding the defaults.  For
filled contours, the default is *False*.  For line contours,
it is taken from :rc:`lines.antialiased`.

nchunk : int >= 0, optional

If 0, no subdivision of the domain.  Specify a positive integer to
divide the domain into subdomains of *nchunk* by *nchunk* quads.
Chunking reduces the maximum length of polygons generated by the
contouring algorithm which reduces the rendering workload passed
on to the backend and also requires slightly less RAM.  It can
however introduce rendering artifacts at chunk boundaries depending
on the backend, the *antialiased* flag and value of *alpha*.

linewidths : float or array-like, default: :rc:`contour.linewidth`

*Only applies to* `.contour`.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with
the linewidths in the order specified.

If None, this falls back to :rc:`lines.linewidth`.

linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional

*Only applies to* `.contour`.

If *linestyles* is *None*, the default is 'solid' unless the lines are
monochrome. In that case, negative contours will instead take their
linestyle from the *negative_linestyles* argument.

*linestyles* can also be an iterable of the above strings specifying a set
of linestyles to be used. If this iterable is shorter than the number of
contour levels it will be repeated as necessary.

negative_linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional

*Only applies to* `.contour`.

If *linestyles* is *None* and the lines are monochrome, this argument
specifies the line style for negative contours.

If *negative_linestyles* is *None*, the default is taken from
:rc:`contour.negative_linestyles`.

*negative_linestyles* can also be an iterable of the above strings
specifying a set of linestyles to be used. If this iterable is shorter than
the number of contour levels it will be repeated as necessary.

hatches : list[str], optional

*Only applies to* `.contourf`.

A list of cross hatch patterns to use on the filled areas.
If None, no hatching will be added to the contour.
Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

algorithm : {'mpl2005', 'mpl2014', 'serial', 'threaded'}, optional

Which contouring algorithm to use to calculate the contour lines and
polygons. The algorithms are implemented in
`ContourPy <https://github.com/contourpy/contourpy>`_, consult the
`ContourPy documentation <https://contourpy.readthedocs.io>`_ for
further information.

The default is taken from :rc:`contour.algorithm`.

clip_path : `~matplotlib.patches.Patch` or `.Path` or `.TransformedPath`

Set the clip path.  See `~matplotlib.artist.Artist.set_clip_path`.

.. versionadded:: 3.8

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

Notes -----

  1. `.contourf` differs from the MATLAB version in that it does not draw the polygon edges. To draw edges, add line contours with calls to `.contour`.

  2. `.contourf` fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is::

    z1 < Z <= z2

    except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

  3. `.contour` and `.contourf` use a `marching squares <https://en.wikipedia.org/wiki/Marching_squares>`_ algorithm to compute contour locations. More information can be found in `ContourPy documentation <https://contourpy.readthedocs.io>`_.

func Contourf

func Contourf(__llgo_va_list ...interface{}) *py.Object

Plot filled contours.

Call signature::

contourf([X, Y,] Z, [levels], **kwargs)

`.contour` and `.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions.

Parameters ---------- X, Y : array-like, optional

The coordinates of the values in *Z*.

*X* and *Y* must both be 2D with the same shape as *Z* (e.g.
created via `numpy.meshgrid`), or they must both be 1-D such
that ``len(X) == N`` is the number of columns in *Z* and
``len(Y) == M`` is the number of rows in *Z*.

*X* and *Y* must both be ordered monotonically.

If not given, they are assumed to be integer indices, i.e.
``X = range(N)``, ``Y = range(M)``.

Z : (M, N) array-like

The height values over which the contour is drawn.  Color-mapping is
controlled by *cmap*, *norm*, *vmin*, and *vmax*.

levels : int or array-like, optional

Determines the number and positions of the contour lines / regions.

If an int *n*, use `~matplotlib.ticker.MaxNLocator`, which tries
to automatically choose no more than *n+1* "nice" contour levels
between minimum and maximum numeric values of *Z*.

If array-like, draw contour lines at the specified levels.
The values must be in increasing order.

Returns ------- `~.contour.QuadContourSet`

Other Parameters ---------------- corner_mask : bool, default: :rc:`contour.corner_mask`

Enable/disable corner masking, which only has an effect if *Z* is
a masked array.  If ``False``, any quad touching a masked point is
masked out.  If ``True``, only the triangular corners of quads
nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

colors : color string or sequence of colors, optional

The colors of the levels, i.e. the lines for `.contour` and the
areas for `.contourf`.

The sequence is cycled for the levels in ascending order. If the
sequence is shorter than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of
one-element lists, i.e. ``'red'`` instead of ``['red']`` to color
all levels with the same color. This shortcut does only work for
color strings, not for other ways of specifying colors.

By default (value *None*), the colormap specified by *cmap*
will be used.

alpha : float, default: 1

The alpha blending value, between 0 (transparent) and 1 (opaque).

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *colors* is set.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *colors* is set.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

If *vmin* or *vmax* are not given, the default color scaling is based on
*levels*.

This parameter is ignored if *colors* is set.

origin : {*None*, 'upper', 'lower', 'image'}, default: None

Determines the orientation and exact position of *Z* by specifying
the position of ``Z[0, 0]``.  This is only relevant, if *X*, *Y*
are not given.

- *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner.
- 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner.
- 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left
  corner.
- 'image': Use the value from :rc:`image.origin`.

extent : (x0, x1, y0, y1), optional

If *origin* is not *None*, then *extent* is interpreted as in
`.imshow`: it gives the outer pixel boundaries. In this case, the
position of Z[0, 0] is the center of the pixel, not a corner. If
*origin* is *None*, then (*x0*, *y0*) is the position of Z[0, 0],
and (*x1*, *y1*) is the position of Z[-1, -1].

This argument is ignored if *X* and *Y* are specified in the call
to contour.

locator : ticker.Locator subclass, optional

The locator is used to determine the contour levels if they
are not given explicitly via *levels*.
Defaults to `~.ticker.MaxNLocator`.

extend : {'neither', 'both', 'min', 'max'}, default: 'neither'

Determines the ``contourf``-coloring of values that are outside the
*levels* range.

If 'neither', values outside the *levels* range are not colored.
If 'min', 'max' or 'both', color the values below, above or below
and above the *levels* range.

Values below ``min(levels)`` and above ``max(levels)`` are mapped
to the under/over values of the `.Colormap`. Note that most
colormaps do not have dedicated colors for these by default, so
that the over and under values are the edge values of the colormap.
You may want to set these values explicitly using
`.Colormap.set_under` and `.Colormap.set_over`.

.. note::

    An existing `.QuadContourSet` does not get notified if
    properties of its colormap are changed. Therefore, an explicit
    call `.QuadContourSet.changed()` is needed after modifying the
    colormap. The explicit call can be left out, if a colorbar is
    assigned to the `.QuadContourSet` because it internally calls
    `.QuadContourSet.changed()`.

Example::

    x = np.arange(1, 10)
    y = x.reshape(-1, 1)
    h = x * y

    cs = plt.contourf(h, levels=[10, 30, 50],
        colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both')
    cs.cmap.set_over('red')
    cs.cmap.set_under('blue')
    cs.changed()

xunits, yunits : registered units, optional

Override axis units by specifying an instance of a
:class:`matplotlib.units.ConversionInterface`.

antialiased : bool, optional

Enable antialiasing, overriding the defaults.  For
filled contours, the default is *False*.  For line contours,
it is taken from :rc:`lines.antialiased`.

nchunk : int >= 0, optional

If 0, no subdivision of the domain.  Specify a positive integer to
divide the domain into subdomains of *nchunk* by *nchunk* quads.
Chunking reduces the maximum length of polygons generated by the
contouring algorithm which reduces the rendering workload passed
on to the backend and also requires slightly less RAM.  It can
however introduce rendering artifacts at chunk boundaries depending
on the backend, the *antialiased* flag and value of *alpha*.

linewidths : float or array-like, default: :rc:`contour.linewidth`

*Only applies to* `.contour`.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with
the linewidths in the order specified.

If None, this falls back to :rc:`lines.linewidth`.

linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional

*Only applies to* `.contour`.

If *linestyles* is *None*, the default is 'solid' unless the lines are
monochrome. In that case, negative contours will instead take their
linestyle from the *negative_linestyles* argument.

*linestyles* can also be an iterable of the above strings specifying a set
of linestyles to be used. If this iterable is shorter than the number of
contour levels it will be repeated as necessary.

negative_linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional

*Only applies to* `.contour`.

If *linestyles* is *None* and the lines are monochrome, this argument
specifies the line style for negative contours.

If *negative_linestyles* is *None*, the default is taken from
:rc:`contour.negative_linestyles`.

*negative_linestyles* can also be an iterable of the above strings
specifying a set of linestyles to be used. If this iterable is shorter than
the number of contour levels it will be repeated as necessary.

hatches : list[str], optional

*Only applies to* `.contourf`.

A list of cross hatch patterns to use on the filled areas.
If None, no hatching will be added to the contour.
Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

algorithm : {'mpl2005', 'mpl2014', 'serial', 'threaded'}, optional

Which contouring algorithm to use to calculate the contour lines and
polygons. The algorithms are implemented in
`ContourPy <https://github.com/contourpy/contourpy>`_, consult the
`ContourPy documentation <https://contourpy.readthedocs.io>`_ for
further information.

The default is taken from :rc:`contour.algorithm`.

clip_path : `~matplotlib.patches.Patch` or `.Path` or `.TransformedPath`

Set the clip path.  See `~matplotlib.artist.Artist.set_clip_path`.

.. versionadded:: 3.8

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

Notes -----

  1. `.contourf` differs from the MATLAB version in that it does not draw the polygon edges. To draw edges, add line contours with calls to `.contour`.

  2. `.contourf` fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is::

    z1 < Z <= z2

    except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

  3. `.contour` and `.contourf` use a `marching squares <https://en.wikipedia.org/wiki/Marching_squares>`_ algorithm to compute contour locations. More information can be found in `ContourPy documentation <https://contourpy.readthedocs.io>`_.

func Cool

func Cool() *py.Object

Set the colormap to 'cool'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Copper

func Copper() *py.Object

Set the colormap to 'copper'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Csd

func Csd(x *py.Object, y *py.Object, NFFT *py.Object, Fs *py.Object, Fc *py.Object, detrend *py.Object, window *py.Object, noverlap *py.Object, padTo *py.Object, sides *py.Object, scaleByFreq *py.Object, returnLine *py.Object) *py.Object

Plot the cross-spectral density.

The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing.

If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*.

Parameters ---------- x, y : 1-D arrays or sequences

Arrays or sequences containing the data.

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  This can be different from *NFFT*, which specifies the number
of data points used.  While not increasing the actual resolution of the
spectrum (the minimum distance between resolvable peaks), this can give
more points in the plot, allowing for more detail. This corresponds to
the *n* parameter in the call to `~numpy.fft.fft`. The default is None,
which sets *pad_to* equal to *NFFT*

NFFT : int, default: 256

The number of data points used in each block for the FFT.  A power 2 is
most efficient.  This should *NOT* be used to get zero padding, or the
scaling of the result will be incorrect; use *pad_to* for this instead.

detrend : {'none', 'mean', 'linear'} or callable, default: 'none'

The function applied to each segment before fft-ing, designed to remove
the mean or linear trend.  Unlike in MATLAB, where the *detrend* parameter
is a vector, in Matplotlib it is a function.  The :mod:`~matplotlib.mlab`
module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
but you can use a custom function as well.  You can also use a string to
choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
`.detrend_mean`. 'linear' calls `.detrend_linear`.

scale_by_freq : bool, default: True

Whether the resulting density values should be scaled by the scaling
frequency, which gives density in units of 1/Hz.  This allows for
integration over the returned frequency values.  The default is True for
MATLAB compatibility.

noverlap : int, default: 0 (no overlap)

The number of points of overlap between segments.

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

return_line : bool, default: False

Whether to include the line object plotted in the returned values.

Returns ------- Pxy : 1-D array

The values for the cross spectrum :math:`P_{xy}` before scaling
(complex valued).

freqs : 1-D array

The frequencies corresponding to the elements in *Pxy*.

line : `~matplotlib.lines.Line2D`

The line created by this function.
Only returned if *return_line* is True.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- psd : is equivalent to setting “y = x“.

Notes ----- For plotting, the power is plotted as :math:`10 \log_{10}(P_{xy})` for decibels, though :math:`P_{xy}` itself is returned.

References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986)

func Cycler

func Cycler(__llgo_va_list ...interface{}) *py.Object

Create a new `Cycler` object from a single positional argument, a pair of positional arguments, or the combination of keyword arguments.

cycler(arg) cycler(label1=itr1[, label2=iter2[, ...]]) cycler(label, itr)

Form 1 simply copies a given `Cycler` object.

Form 2 composes a `Cycler` as an inner product of the pairs of keyword arguments. In other words, all of the iterables are cycled simultaneously, as if through zip().

Form 3 creates a `Cycler` from a label and an iterable. This is useful for when the label cannot be a keyword argument (e.g., an integer or a name that has a space in it).

Parameters ---------- arg : Cycler

Copy constructor for Cycler (does a shallow copy of iterables).

label : name

The property key. In the 2-arg form of the function,
the label can be any hashable object. In the keyword argument
form of the function, it must be a valid python identifier.

itr : iterable

Finite length iterable of the property values.
Can be a single-property `Cycler` that would
be like a key change, but as a shallow copy.

Returns ------- cycler : Cycler

New `Cycler` for the given property

func Delaxes

func Delaxes(ax *py.Object) *py.Object

Remove an `~.axes.Axes` (defaulting to the current axes) from its figure.

func Disconnect

func Disconnect(cid *py.Object) *py.Object

Disconnect the callback with id *cid*.

Examples -------- ::

cid = canvas.mpl_connect('button_press_event', on_press)
# ... later
canvas.mpl_disconnect(cid)

func Draw

func Draw() *py.Object

Redraw the current figure.

This is used to update a figure that has been altered, but not automatically re-drawn. If interactive mode is on (via `.ion()`), this should be only rarely needed, but there may be ways to modify the state of a figure without marking it as "stale". Please report these cases as bugs.

This is equivalent to calling “fig.canvas.draw_idle()“, where “fig“ is the current figure.

See Also -------- .FigureCanvasBase.draw_idle .FigureCanvasBase.draw

func DrawAll

func DrawAll(force *py.Object) *py.Object

Redraw all stale managed figures, or, if *force* is True, all managed figures.

func DrawIfInteractive

func DrawIfInteractive(__llgo_va_list ...interface{}) *py.Object

Redraw the current figure if in interactive mode.

.. warning::

End users will typically not have to call this function because the
the interactive mode takes care of this.

func Ecdf

func Ecdf(x *py.Object, weights *py.Object) *py.Object

Compute and plot the empirical cumulative distribution function of *x*.

.. versionadded:: 3.8

Parameters ---------- x : 1d array-like

The input data.  Infinite entries are kept (and move the relevant
end of the ecdf from 0/1), but NaNs and masked values are errors.

weights : 1d array-like or None, default: None

The weights of the entries; must have the same shape as *x*.
Weights corresponding to NaN data points are dropped, and then the
remaining weights are normalized to sum to 1.  If unset, all
entries have the same weight.

complementary : bool, default: False

Whether to plot a cumulative distribution function, which increases
from 0 to 1 (the default), or a complementary cumulative
distribution function, which decreases from 1 to 0.

orientation : {"vertical", "horizontal"}, default: "vertical"

Whether the entries are plotted along the x-axis ("vertical", the
default) or the y-axis ("horizontal").  This parameter takes the
same values as in `~.Axes.hist`.

compress : bool, default: False

Whether multiple entries with the same values are grouped together
(with a summed weight) before plotting.  This is mainly useful if
*x* contains many identical data points, to decrease the rendering
complexity of the plot. If *x* contains no duplicate points, this
has no effect and just uses some time and memory.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *weights*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

Returns ------- `.Line2D`

Notes ----- The ecdf plot can be thought of as a cumulative histogram with one bin per data entry; i.e. it reports on the entire dataset without any arbitrary binning.

If *x* contains NaNs or masked entries, either remove them first from the array (if they should not taken into account), or replace them by -inf or +inf (if they should be sorted at the beginning or the end of the array).

func Errorbar

func Errorbar(x *py.Object, y *py.Object, yerr *py.Object, xerr *py.Object, fmt *py.Object, ecolor *py.Object, elinewidth *py.Object, capsize *py.Object, barsabove *py.Object, lolims *py.Object, uplims *py.Object, xlolims *py.Object, xuplims *py.Object, errorevery *py.Object, capthick *py.Object) *py.Object

Plot y versus x as lines and/or markers with attached errorbars.

*x*, *y* define the data locations, *xerr*, *yerr* define the errorbar sizes. By default, this draws the data markers/lines as well as the errorbars. Use fmt='none' to draw errorbars without any data markers.

.. versionadded:: 3.7

Caps and error lines are drawn in polar coordinates on polar plots.

Parameters ---------- x, y : float or array-like

The data positions.

xerr, yerr : float or array-like, shape(N,) or shape(2, N), optional

The errorbar sizes:

- scalar: Symmetric +/- values for all data points.
- shape(N,): Symmetric +/-values for each data point.
- shape(2, N): Separate - and + values for each bar. First row
  contains the lower errors, the second row contains the upper
  errors.
- *None*: No errorbar.

All values must be >= 0.

See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.

fmt : str, default: ”

The format for the data points / data lines. See `.plot` for
details.

Use 'none' (case-insensitive) to plot errorbars without any data
markers.

ecolor : color, default: None

The color of the errorbar lines.  If None, use the color of the
line connecting the markers.

elinewidth : float, default: None

The linewidth of the errorbar lines. If None, the linewidth of
the current style is used.

capsize : float, default: :rc:`errorbar.capsize`

The length of the error bar caps in points.

capthick : float, default: None

An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
This setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.

barsabove : bool, default: False

If True, will plot the errorbars above the plot
symbols. Default is below.

lolims, uplims, xlolims, xuplims : bool or array-like, default: False

These arguments can be used to indicate that a value gives only
upper/lower limits.  In that case a caret symbol is used to
indicate this. *lims*-arguments may be scalars, or array-likes of
the same length as *xerr* and *yerr*.  To use limits with inverted
axes, `~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
:meth:`errorbar`.  Note the tricky parameter names: setting e.g.
*lolims* to True means that the y-value is a *lower* limit of the
True value, so, only an *upward*-pointing arrow will be drawn!

errorevery : int or (int, int), default: 1

draws error bars on a subset of the data. *errorevery* =N draws
error bars on the points (x[::N], y[::N]).
*errorevery* =(start, N) draws error bars on the points
(x[start::N], y[start::N]). e.g. errorevery=(6, 3)
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
Used to avoid overlapping error bars when two series share x-axis
values.

Returns ------- `.ErrorbarContainer`

The container contains:

- plotline: `~matplotlib.lines.Line2D` instance of x, y plot markers
  and/or line.
- caplines: A tuple of `~matplotlib.lines.Line2D` instances of the error
  bar caps.
- barlinecols: A tuple of `.LineCollection` with the horizontal and
  vertical error ranges.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*, *xerr*, *yerr*

**kwargs

All other keyword arguments are passed on to the `~.Axes.plot` call
drawing the markers. For example, this code makes big red squares
with thick green edges::

    x, y, yerr = rand(3, 10)
    errorbar(x, y, yerr, marker='s', mfc='red',
             mec='green', ms=20, mew=4)

where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewidth*.

Valid kwargs for the marker properties are:

- *dashes*
- *dash_capstyle*
- *dash_joinstyle*
- *drawstyle*
- *fillstyle*
- *linestyle*
- *marker*
- *markeredgecolor*
- *markeredgewidth*
- *markerfacecolor*
- *markerfacecoloralt*
- *markersize*
- *markevery*
- *solid_capstyle*
- *solid_joinstyle*

Refer to the corresponding `.Line2D` property for more details:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

func Eventplot

func Eventplot(positions *py.Object, orientation *py.Object, lineoffsets *py.Object, linelengths *py.Object, linewidths *py.Object, colors *py.Object, alpha *py.Object, linestyles *py.Object) *py.Object

Plot identical parallel lines at the given positions.

This type of plot is commonly used in neuroscience for representing neural events, where it is usually called a spike raster, dot raster, or raster plot.

However, it is useful in any situation where you wish to show the timing or position of multiple sets of discrete events, such as the arrival times of people to a business on each day of the month or the date of hurricanes each year of the last century.

Parameters ---------- positions : array-like or list of array-like

A 1D array-like defines the positions of one sequence of events.

Multiple groups of events may be passed as a list of array-likes.
Each group can be styled independently by passing lists of values
to *lineoffsets*, *linelengths*, *linewidths*, *colors* and
*linestyles*.

Note that *positions* can be a 2D array, but in practice different
event groups usually have different counts so that one will use a
list of different-length arrays rather than a 2D array.

orientation : {'horizontal', 'vertical'}, default: 'horizontal'

The direction of the event sequence:

- 'horizontal': the events are arranged horizontally.
  The indicator lines are vertical.
- 'vertical': the events are arranged vertically.
  The indicator lines are horizontal.

lineoffsets : float or array-like, default: 1

The offset of the center of the lines from the origin, in the
direction orthogonal to *orientation*.

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

linelengths : float or array-like, default: 1

The total height of the lines (i.e. the lines stretches from
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

linewidths : float or array-like, default: :rc:`lines.linewidth`

The line width(s) of the event lines, in points.

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

colors : color or list of colors, default: :rc:`lines.color`

The color(s) of the event lines.

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

alpha : float or array-like, default: 1

The alpha blending value(s), between 0 (transparent) and 1
(opaque).

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

linestyles : str or tuple or list of such values, default: 'solid'

Default is 'solid'. Valid strings are ['solid', 'dashed',
'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
should be of the form::

    (offset, onoffseq),

where *onoffseq* is an even length tuple of on and off ink
in points.

If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*positions*, *lineoffsets*, *linelengths*, *linewidths*, *colors*, *linestyles*

**kwargs

Other keyword arguments are line collection properties.  See
`.LineCollection` for a list of the valid properties.

Returns ------- list of `.EventCollection`

The `.EventCollection` that were added.

Notes ----- For *linelengths*, *linewidths*, *colors*, *alpha* and *linestyles*, if only a single value is given, that value is applied to all lines. If an array-like is given, it must have the same length as *positions*, and each value will be applied to the corresponding row of the array.

Examples -------- .. plot:: gallery/lines_bars_and_markers/eventplot_demo.py

func Figaspect

func Figaspect(arg *py.Object) *py.Object

Calculate the width and height for a figure with a specified aspect ratio.

While the height is taken from :rc:`figure.figsize`, the width is adjusted to match the desired aspect ratio. Additionally, it is ensured that the width is in the range [4., 16.] and the height is in the range [2., 16.]. If necessary, the default height is adjusted to ensure this.

Parameters ---------- arg : float or 2D array

If a float, this defines the aspect ratio (i.e. the ratio height /
width).
In case of an array the aspect ratio is number of rows / number of
columns, so that the array could be fitted in the figure undistorted.

Returns ------- width, height : float

The figure size in inches.

Notes ----- If you want to create an Axes within the figure, that still preserves the aspect ratio, be sure to create it with equal width and height. See examples below.

Thanks to Fernando Perez for this function.

Examples -------- Make a figure twice as tall as it is wide::

w, h = figaspect(2.)
fig = Figure(figsize=(w, h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Make a figure with the proper aspect for an array::

A = rand(5, 3)
w, h = figaspect(A)
fig = Figure(figsize=(w, h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

func Figimage

func Figimage(X *py.Object, xo *py.Object, yo *py.Object, alpha *py.Object, norm *py.Object, cmap *py.Object, vmin *py.Object, vmax *py.Object, origin *py.Object, resize *py.Object) *py.Object

Add a non-resampled image to the figure.

The image is attached to the lower or upper left corner depending on *origin*.

Parameters ---------- X

The image data. This is an array of one of the following shapes:

- (M, N): an image with scalar data.  Color-mapping is controlled
  by *cmap*, *norm*, *vmin*, and *vmax*.
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
  i.e. including transparency.

xo, yo : int

The *x*/*y* image offset in pixels.

alpha : None or float

The alpha blending value.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *X* is RGB(A).

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *X* is RGB(A).

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

This parameter is ignored if *X* is RGB(A).

origin : {'upper', 'lower'}, default: :rc:`image.origin`

Indicates where the [0, 0] index of the array is in the upper left
or lower left corner of the axes.

resize : bool

If *True*, resize the figure to match the given image size.

Returns ------- `matplotlib.image.FigureImage`

Other Parameters ---------------- **kwargs

Additional kwargs are `.Artist` kwargs passed on to `.FigureImage`.

Notes ----- figimage complements the Axes image (`~matplotlib.axes.Axes.imshow`) which will be resampled to fit the current Axes. If you want a resampled image to fill the entire figure, you can define an `~matplotlib.axes.Axes` with extent [0, 0, 1, 1].

Examples -------- ::

f = plt.figure()
nx = int(f.get_figwidth() * f.dpi)
ny = int(f.get_figheight() * f.dpi)
data = np.random.random((ny, nx))
f.figimage(data)
plt.show()

func Figlegend

func Figlegend(__llgo_va_list ...interface{}) *py.Object

Place a legend on the figure.

Call signatures::

figlegend()
figlegend(handles, labels)
figlegend(handles=handles)
figlegend(labels)

The call signatures correspond to the following different ways to use this method:

**1. Automatic detection of elements to be shown in the legend**

The elements to be added to the legend are automatically determined, when you do not pass in any extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or by calling the :meth:`~.Artist.set_label` method on the artist::

plt.plot([1, 2, 3], label='Inline label')
plt.figlegend()

or::

line, = plt.plot([1, 2, 3])
line.set_label('Label via method')
plt.figlegend()

Specific lines can be excluded from the automatic legend element selection by defining a label starting with an underscore. This is default for all artists, so calling `.Figure.legend` without any arguments and without setting the labels manually will result in no legend being drawn.

**2. Explicitly listing the artists and labels in the legend**

For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists followed by an iterable of legend labels respectively::

plt.figlegend([line1, line2, line3], ['label1', 'label2', 'label3'])

**3. Explicitly listing the artists in the legend**

This is similar to 2, but the labels are taken from the artists' label properties. Example::

line1, = ax1.plot([1, 2, 3], label='label1')
line2, = ax2.plot([1, 2, 3], label='label2')
plt.figlegend(handles=[line1, line2])

**4. Labeling existing plot elements**

.. admonition:: Discouraged

This call signature is discouraged, because the relation between
plot elements and labels is only implicit by their order and can
easily be mixed up.

To make a legend for all artists on all Axes, call this function with an iterable of strings, one for each legend item. For example::

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot([1, 3, 5], color='blue')
ax2.plot([2, 4, 6], color='red')
plt.figlegend(['the blues', 'the reds'])

Parameters ---------- handles : list of `.Artist`, optional

A list of Artists (lines, patches) to be added to the legend.
Use this together with *labels*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.

The length of handles and labels should be the same in this
case. If they are not, they are truncated to the smaller length.

labels : list of str, optional

A list of labels to show next to the artists.
Use this together with *handles*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.

Returns ------- `~matplotlib.legend.Legend`

Other Parameters ----------------

loc : str or pair of floats, default: 'upper right'

The location of the legend.

The strings ``'upper left'``, ``'upper right'``, ``'lower left'``,
``'lower right'`` place the legend at the corresponding corner of the
figure.

The strings ``'upper center'``, ``'lower center'``, ``'center left'``,
``'center right'`` place the legend at the center of the corresponding edge
of the figure.

The string ``'center'`` places the legend at the center of the figure.

The location can also be a 2-tuple giving the coordinates of the lower-left
corner of the legend in figure coordinates (in which case *bbox_to_anchor*
will be ignored).

For back-compatibility, ``'center right'`` (but no other location) can also
be spelled ``'right'``, and each "string" location can also be given as a
numeric value:

==================   =============
Location String      Location Code
==================   =============
'best' (Axes only)   0
'upper right'        1
'upper left'         2
'lower left'         3
'lower right'        4
'right'              5
'center left'        6
'center right'       7
'lower center'       8
'upper center'       9
'center'             10
==================   =============

If a figure is using the constrained layout manager, the string codes
of the *loc* keyword argument can get better layout behaviour using the
prefix 'outside'. There is ambiguity at the corners, so 'outside
upper right' will make space for the legend above the rest of the
axes in the layout, and 'outside right upper' will make space on the
right side of the layout.  In addition to the values of *loc*
listed above, we have 'outside right upper', 'outside right lower',
'outside left upper', and 'outside left lower'.  See
:ref:`legend_guide` for more details.

bbox_to_anchor : `.BboxBase`, 2-tuple, or 4-tuple of floats

Box that is used to position the legend in conjunction with *loc*.
Defaults to `axes.bbox` (if called as a method to `.Axes.legend`) or
`figure.bbox` (if `.Figure.legend`).  This argument allows arbitrary
placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
*bbox_transform*, with the default transform
Axes or Figure coordinates, depending on which ``legend`` is called.

If a 4-tuple or `.BboxBase` is given, then it specifies the bbox
``(x, y, width, height)`` that the legend is placed in.
To put the legend in the best location in the bottom right
quadrant of the axes (or figure)::

    loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple ``(x, y)`` places the corner of the legend specified by *loc* at
x, y.  For example, to put the legend's upper right-hand corner in the
center of the axes (or figure) the following keywords can be used::

    loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncols : int, default: 1

The number of columns that the legend has.

For backward compatibility, the spelling *ncol* is also supported
but it is discouraged. If both are given, *ncols* takes precedence.

prop : None or `~matplotlib.font_manager.FontProperties` or dict

The font properties of the legend. If None (default), the current
:data:`matplotlib.rcParams` will be used.

fontsize : int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}

The font size of the legend. If the value is numeric the size will be the
absolute font size in points. String values are relative to the current
default font size. This argument is only used if *prop* is not specified.

labelcolor : str or list, default: :rc:`legend.labelcolor`

The color of the text in the legend. Either a valid color string
(for example, 'red'), or a list of color strings. The labelcolor can
also be made to match the color of the line or marker using 'linecolor',
'markerfacecolor' (or 'mfc'), or 'markeredgecolor' (or 'mec').

Labelcolor can be set globally using :rc:`legend.labelcolor`. If None,
use :rc:`text.color`.

numpoints : int, default: :rc:`legend.numpoints`

The number of marker points in the legend when creating a legend
entry for a `.Line2D` (line).

scatterpoints : int, default: :rc:`legend.scatterpoints`

The number of marker points in the legend when creating
a legend entry for a `.PathCollection` (scatter plot).

scatteryoffsets : iterable of floats, default: “[0.375, 0.5, 0.3125]“

The vertical offset (relative to the font size) for the markers
created for a scatter plot legend entry. 0.0 is at the base the
legend text, and 1.0 is at the top. To draw all markers at the
same height, set to ``[0.5]``.

markerscale : float, default: :rc:`legend.markerscale`

The relative size of legend markers compared to the originally drawn ones.

markerfirst : bool, default: True

If *True*, legend marker is placed to the left of the legend label.
If *False*, legend marker is placed to the right of the legend label.

reverse : bool, default: False

If *True*, the legend labels are displayed in reverse order from the input.
If *False*, the legend labels are displayed in the same order as the input.

.. versionadded:: 3.7

frameon : bool, default: :rc:`legend.frameon`

Whether the legend should be drawn on a patch (frame).

fancybox : bool, default: :rc:`legend.fancybox`

Whether round edges should be enabled around the `.FancyBboxPatch` which
makes up the legend's background.

shadow : None, bool or dict, default: :rc:`legend.shadow`

Whether to draw a shadow behind the legend.
The shadow can be configured using `.Patch` keywords.
Customization via :rc:`legend.shadow` is currently not supported.

framealpha : float, default: :rc:`legend.framealpha`

The alpha transparency of the legend's background.
If *shadow* is activated and *framealpha* is ``None``, the default value is
ignored.

facecolor : "inherit" or color, default: :rc:`legend.facecolor`

The legend's background color.
If ``"inherit"``, use :rc:`axes.facecolor`.

edgecolor : "inherit" or color, default: :rc:`legend.edgecolor`

The legend's background patch edge color.
If ``"inherit"``, use take :rc:`axes.edgecolor`.

mode : {"expand", None}

If *mode* is set to ``"expand"`` the legend will be horizontally
expanded to fill the axes area (or *bbox_to_anchor* if defines
the legend's size).

bbox_transform : None or `~matplotlib.transforms.Transform`

The transform for the bounding box (*bbox_to_anchor*). For a value
of ``None`` (default) the Axes'
:data:`~matplotlib.axes.Axes.transAxes` transform will be used.

title : str or None

The legend's title. Default is no title (``None``).

title_fontproperties : None or `~matplotlib.font_manager.FontProperties` or dict

The font properties of the legend's title. If None (default), the
*title_fontsize* argument will be used if present; if *title_fontsize* is
also None, the current :rc:`legend.title_fontsize` will be used.

title_fontsize : int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default: :rc:`legend.title_fontsize`

The font size of the legend's title.
Note: This cannot be combined with *title_fontproperties*. If you want
to set the fontsize alongside other font properties, use the *size*
parameter in *title_fontproperties*.

alignment : {'center', 'left', 'right'}, default: 'center'

The alignment of the legend title and the box of entries. The entries
are aligned as a single block, so that markers always lined up.

borderpad : float, default: :rc:`legend.borderpad`

The fractional whitespace inside the legend border, in font-size units.

labelspacing : float, default: :rc:`legend.labelspacing`

The vertical space between the legend entries, in font-size units.

handlelength : float, default: :rc:`legend.handlelength`

The length of the legend handles, in font-size units.

handleheight : float, default: :rc:`legend.handleheight`

The height of the legend handles, in font-size units.

handletextpad : float, default: :rc:`legend.handletextpad`

The pad between the legend handle and text, in font-size units.

borderaxespad : float, default: :rc:`legend.borderaxespad`

The pad between the axes and legend border, in font-size units.

columnspacing : float, default: :rc:`legend.columnspacing`

The spacing between columns, in font-size units.

handler_map : dict or None

The custom dictionary mapping instances or types to a legend
handler. This *handler_map* updates the default handler map
found at `matplotlib.legend.Legend.get_legend_handler_map`.

draggable : bool, default: False

Whether the legend can be dragged with the mouse.

See Also -------- .Axes.legend

Notes ----- Some artists are not supported by this function. See :ref:`legend_guide` for details.

func FignumExists

func FignumExists(num *py.Object) *py.Object

Return whether the figure with the given id exists.

Parameters
----------
num : int or str
    A figure identifier.

Returns
-------
bool
    Whether or not a figure with id *num* exists.

func Figtext

func Figtext(x *py.Object, y *py.Object, s *py.Object, fontdict *py.Object) *py.Object

Add text to figure.

Parameters ---------- x, y : float

The position to place the text. By default, this is in figure
coordinates, floats in [0, 1]. The coordinate system can be changed
using the *transform* keyword.

s : str

The text string.

fontdict : dict, optional

A dictionary to override the default text properties. If not given,
the defaults are determined by :rc:`font.*`. Properties passed as
*kwargs* override the corresponding ones given in *fontdict*.

Returns ------- `~.text.Text`

Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties

Other miscellaneous text parameters.

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased: bool
backgroundcolor: color
bbox: dict with properties for `.patches.FancyBboxPatch`
clip_box: unknown
clip_on: unknown
clip_path: unknown
color or c: color
figure: `~matplotlib.figure.Figure`
fontfamily or family or fontname: {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties: `.font_manager.FontProperties` or `str` or `pathlib.Path`
fontsize or size: float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch: {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style: {'normal', 'italic', 'oblique'}
fontvariant or variant: {'normal', 'small-caps'}
fontweight or weight: {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid: str
horizontalalignment or ha: {'left', 'center', 'right'}
in_layout: bool
label: object
linespacing: float (multiple of font size)
math_fontfamily: str
mouseover: bool
multialignment or ma: {'left', 'right', 'center'}
parse_math: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
position: (float, float)
rasterized: bool
rotation: float or {'vertical', 'horizontal'}
rotation_mode: {None, 'default', 'anchor'}
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
text: object
transform: `~matplotlib.transforms.Transform`
transform_rotates_text: bool
url: str
usetex: bool or None
verticalalignment or va: {'baseline', 'bottom', 'center', 'center_baseline', 'top'}
visible: bool
wrap: bool
x: float
y: float
zorder: float

See Also -------- .Axes.text .pyplot.text

func Figure

func Figure(num *py.Object, figsize *py.Object, dpi *py.Object) *py.Object

Create a new figure, or activate an existing figure.

Parameters ---------- num : int or str or `.Figure` or `.SubFigure`, optional

A unique identifier for the figure.

If a figure with that identifier already exists, this figure is made
active and returned. An integer refers to the ``Figure.number``
attribute, a string refers to the figure label.

If there is no figure with the identifier or *num* is not given, a new
figure is created, made active and returned.  If *num* is an int, it
will be used for the ``Figure.number`` attribute, otherwise, an
auto-generated integer value is used (starting at 1 and incremented
for each new figure). If *num* is a string, the figure label and the
window title is set to this value.  If num is a ``SubFigure``, its
parent ``Figure`` is activated.

figsize : (float, float), default: :rc:`figure.figsize`

Width, height in inches.

dpi : float, default: :rc:`figure.dpi`

The resolution of the figure in dots-per-inch.

facecolor : color, default: :rc:`figure.facecolor`

The background color.

edgecolor : color, default: :rc:`figure.edgecolor`

The border color.

frameon : bool, default: True

If False, suppress drawing the figure frame.

FigureClass : subclass of `~matplotlib.figure.Figure`

If set, an instance of this subclass will be created, rather than a
plain `.Figure`.

clear : bool, default: False

If True and the figure already exists, then it is cleared.

layout : {'constrained', 'compressed', 'tight', 'none', `.LayoutEngine`, None}, default: None

The layout mechanism for positioning of plot elements to avoid
overlapping Axes decorations (labels, ticks, etc). Note that layout
managers can measurably slow down figure display.

- 'constrained': The constrained layout solver adjusts axes sizes
  to avoid overlapping axes decorations.  Can handle complex plot
  layouts and colorbars, and is thus recommended.

  See :ref:`constrainedlayout_guide`
  for examples.

- 'compressed': uses the same algorithm as 'constrained', but
  removes extra space between fixed-aspect-ratio Axes.  Best for
  simple grids of axes.

- 'tight': Use the tight layout mechanism. This is a relatively
  simple algorithm that adjusts the subplot parameters so that
  decorations do not overlap. See `.Figure.set_tight_layout` for
  further details.

- 'none': Do not use a layout engine.

- A `.LayoutEngine` instance. Builtin layout classes are
  `.ConstrainedLayoutEngine` and `.TightLayoutEngine`, more easily
  accessible by 'constrained' and 'tight'.  Passing an instance
  allows third parties to provide their own layout engine.

If not given, fall back to using the parameters *tight_layout* and
*constrained_layout*, including their config defaults
:rc:`figure.autolayout` and :rc:`figure.constrained_layout.use`.

**kwargs

Additional keyword arguments are passed to the `.Figure` constructor.

Returns ------- `~matplotlib.figure.Figure`

Notes ----- A newly created figure is passed to the `~.FigureCanvasBase.new_manager` method or the `new_figure_manager` function provided by the current backend, which install a canvas and a manager on the figure.

Once this is done, :rc:`figure.hooks` are called, one at a time, on the figure; these hooks allow arbitrary customization of the figure (e.g., attaching callbacks) or of associated elements (e.g., modifying the toolbar). See :doc:`/gallery/user_interfaces/mplcvd` for an example of toolbar customization.

If you are creating many figures, make sure you explicitly call `.pyplot.close` on the figures you are not using, because this will enable pyplot to properly clean up the memory.

`~matplotlib.rcParams` defines the default values, which can be modified in the matplotlibrc file.

func Fill

func Fill(__llgo_va_list ...interface{}) *py.Object

Plot filled polygons.

Parameters ---------- *args : sequence of x, y, [color]

Each polygon is defined by the lists of *x* and *y* positions of
its nodes, optionally followed by a *color* specifier. See
:mod:`matplotlib.colors` for supported color specifiers. The
standard color cycle is used for polygons without a color
specifier.

You can plot multiple polygons by providing multiple *x*, *y*,
*[color]* groups.

For example, each of the following is legal::

    ax.fill(x, y)                    # a polygon with default color
    ax.fill(x, y, "b")               # a blue polygon
    ax.fill(x, y, x2, y2)            # two polygons
    ax.fill(x, y, "b", x2, y2, "r")  # a blue and a red polygon

data : indexable object, optional

An object with labelled data. If given, provide the label names to
plot in *x* and *y*, e.g.::

    ax.fill("time", "signal",
            data={"time": [0, 1, 2], "signal": [0, 1, 0]})

Returns ------- list of `~matplotlib.patches.Polygon`

Other Parameters ---------------- **kwargs : `~matplotlib.patches.Polygon` properties

Notes ----- Use :meth:`fill_between` if you would like to fill the region between two curves.

func FillBetween

func FillBetween(x *py.Object, y1 *py.Object, y2 *py.Object, where *py.Object, interpolate *py.Object, step *py.Object) *py.Object

Fill the area between two horizontal curves.

The curves are defined by the points (*x*, *y1*) and (*x*, *y2*). This creates one or multiple polygons describing the filled area.

You may exclude some horizontal sections from filling using *where*.

By default, the edges connect the given points directly. Use *step* if the filling should be a step function, i.e. constant in between *x*.

Parameters ---------- x : array (length N)

The x coordinates of the nodes defining the curves.

y1 : array (length N) or scalar

The y coordinates of the nodes defining the first curve.

y2 : array (length N) or scalar, default: 0

The y coordinates of the nodes defining the second curve.

where : array of bool (length N), optional

Define *where* to exclude some horizontal regions from being filled.
The filled regions are defined by the coordinates ``x[where]``.
More precisely, fill between ``x[i]`` and ``x[i+1]`` if
``where[i] and where[i+1]``.  Note that this definition implies
that an isolated *True* value between two *False* values in *where*
will not result in filling.  Both sides of the *True* position
remain unfilled due to the adjacent *False* values.

interpolate : bool, default: False

This option is only relevant if *where* is used and the two curves
are crossing each other.

Semantically, *where* is often used for *y1* > *y2* or
similar.  By default, the nodes of the polygon defining the filled
region will only be placed at the positions in the *x* array.
Such a polygon cannot describe the above semantics close to the
intersection.  The x-sections containing the intersection are
simply clipped.

Setting *interpolate* to *True* will calculate the actual
intersection point and extend the filled region up to this point.

step : {'pre', 'post', 'mid'}, optional

Define *step* if the filling should be a step function,
i.e. constant in between *x*.  The value determines where the
step will occur:

- 'pre': The y value is continued constantly to the left from
  every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
  value ``y[i]``.
- 'post': The y value is continued constantly to the right from
  every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
  value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.

Returns ------- `.PolyCollection`

A `.PolyCollection` containing the plotted polygons.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y1*, *y2*, *where*

**kwargs

All other keyword arguments are passed on to `.PolyCollection`.
They control the `.Polygon` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

See Also -------- fill_between : Fill between two sets of y-values. fill_betweenx : Fill between two sets of x-values.

func FillBetweenx

func FillBetweenx(y *py.Object, x1 *py.Object, x2 *py.Object, where *py.Object, step *py.Object, interpolate *py.Object) *py.Object

Fill the area between two vertical curves.

The curves are defined by the points (*y*, *x1*) and (*y*, *x2*). This creates one or multiple polygons describing the filled area.

You may exclude some vertical sections from filling using *where*.

By default, the edges connect the given points directly. Use *step* if the filling should be a step function, i.e. constant in between *y*.

Parameters ---------- y : array (length N)

The y coordinates of the nodes defining the curves.

x1 : array (length N) or scalar

The x coordinates of the nodes defining the first curve.

x2 : array (length N) or scalar, default: 0

The x coordinates of the nodes defining the second curve.

where : array of bool (length N), optional

Define *where* to exclude some vertical regions from being filled.
The filled regions are defined by the coordinates ``y[where]``.
More precisely, fill between ``y[i]`` and ``y[i+1]`` if
``where[i] and where[i+1]``.  Note that this definition implies
that an isolated *True* value between two *False* values in *where*
will not result in filling.  Both sides of the *True* position
remain unfilled due to the adjacent *False* values.

interpolate : bool, default: False

This option is only relevant if *where* is used and the two curves
are crossing each other.

Semantically, *where* is often used for *x1* > *x2* or
similar.  By default, the nodes of the polygon defining the filled
region will only be placed at the positions in the *y* array.
Such a polygon cannot describe the above semantics close to the
intersection.  The y-sections containing the intersection are
simply clipped.

Setting *interpolate* to *True* will calculate the actual
intersection point and extend the filled region up to this point.

step : {'pre', 'post', 'mid'}, optional

Define *step* if the filling should be a step function,
i.e. constant in between *y*.  The value determines where the
step will occur:

- 'pre': The y value is continued constantly to the left from
  every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
  value ``y[i]``.
- 'post': The y value is continued constantly to the right from
  every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
  value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.

Returns ------- `.PolyCollection`

A `.PolyCollection` containing the plotted polygons.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*y*, *x1*, *x2*, *where*

**kwargs

All other keyword arguments are passed on to `.PolyCollection`.
They control the `.Polygon` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

See Also -------- fill_between : Fill between two sets of y-values. fill_betweenx : Fill between two sets of x-values.

func Findobj

func Findobj(o *py.Object, match *py.Object, includeSelf *py.Object) *py.Object

Find artist objects.

Recursively find all `.Artist` instances contained in the artist.

Parameters ---------- match

A filter criterion for the matches. This can be

- *None*: Return all objects contained in artist.
- A function with signature ``def match(artist: Artist) -> bool``.
  The result will only contain artists for which the function
  returns *True*.
- A class instance: e.g., `.Line2D`. The result will only contain
  artists of this class or its subclasses (``isinstance`` check).

include_self : bool

Include *self* in the list to be checked for a match.

Returns ------- list of `.Artist`

func Flag

func Flag() *py.Object

Set the colormap to 'flag'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Gca

func Gca() *py.Object

Get the current Axes.

If there is currently no Axes on this Figure, a new one is created using `.Figure.add_subplot`. (To test whether there is currently an Axes on a Figure, check whether “figure.axes“ is empty. To test whether there is currently a Figure on the pyplot figure stack, check whether `.pyplot.get_fignums()` is empty.)

func Gcf

func Gcf() *py.Object

Get the current figure.

If there is currently no figure on the pyplot figure stack, a new one is created using `~.pyplot.figure()`. (To test whether there is currently a figure on the pyplot figure stack, check whether `~.pyplot.get_fignums()` is empty.)

func Gci

func Gci() *py.Object

Get the current colorable artist.

Specifically, returns the current `.ScalarMappable` instance (`.Image` created by `imshow` or `figimage`, `.Collection` created by `pcolor` or `scatter`, etc.), or *None* if no such instance has been defined.

The current image is an attribute of the current Axes, or the nearest earlier Axes in the current figure that contains an image.

Notes ----- Historically, the only colorable artists were images; hence the name “gci“ (get current image).

func Get

func Get(obj *py.Object, __llgo_va_list ...interface{}) *py.Object

Return the value of an `.Artist`'s *property*, or print all of them.

Parameters ---------- obj : `~matplotlib.artist.Artist`

The queried artist; e.g., a `.Line2D`, a `.Text`, or an `~.axes.Axes`.

property : str or None, default: None

If *property* is 'somename', this function returns
``obj.get_somename()``.

If it's None (or unset), it *prints* all gettable properties from
*obj*.  Many properties have aliases for shorter typing, e.g. 'lw' is
an alias for 'linewidth'.  In the output, aliases and full property
names will be listed as:

  property or alias = value

e.g.:

  linewidth or lw = 2

See Also -------- setp

func GetBackend

func GetBackend() *py.Object

Return the name of the current backend.

See Also -------- matplotlib.use

func GetCmap

func GetCmap(name *py.Object, lut *py.Object) *py.Object

Get a colormap instance, defaulting to rc values if *name* is None.

Parameters ---------- name : `~matplotlib.colors.Colormap` or str or None, default: None

If a `.Colormap` instance, it will be returned. Otherwise, the name of
a colormap known to Matplotlib, which will be resampled by *lut*. The
default, None, means :rc:`image.cmap`.

lut : int or None, default: None

If *name* is not already a Colormap instance and *lut* is not None, the
colormap will be resampled to have *lut* entries in the lookup table.

Returns ------- Colormap

func GetCurrentFigManager

func GetCurrentFigManager() *py.Object

Return the figure manager of the current figure.

The figure manager is a container for the actual backend-depended window that displays the figure on screen.

If no current figure exists, a new one is created, and its figure manager is returned.

Returns ------- `.FigureManagerBase` or backend-dependent subclass thereof

func GetFiglabels

func GetFiglabels() *py.Object

Return a list of existing figure labels.

func GetFignums

func GetFignums() *py.Object

Return a list of existing figure numbers.

func GetPlotCommands

func GetPlotCommands() *py.Object

[*Deprecated*] Get a sorted list of all of the plotting commands.

Notes ----- .. deprecated:: 3.7

func GetScaleNames

func GetScaleNames() *py.Object

Return the names of the available scales.

func Getp

func Getp(obj *py.Object, __llgo_va_list ...interface{}) *py.Object

Return the value of an `.Artist`'s *property*, or print all of them.

Parameters ---------- obj : `~matplotlib.artist.Artist`

The queried artist; e.g., a `.Line2D`, a `.Text`, or an `~.axes.Axes`.

property : str or None, default: None

If *property* is 'somename', this function returns
``obj.get_somename()``.

If it's None (or unset), it *prints* all gettable properties from
*obj*.  Many properties have aliases for shorter typing, e.g. 'lw' is
an alias for 'linewidth'.  In the output, aliases and full property
names will be listed as:

  property or alias = value

e.g.:

  linewidth or lw = 2

See Also -------- setp

func Ginput

func Ginput(n *py.Object, timeout *py.Object, showClicks *py.Object, mouseAdd *py.Object, mousePop *py.Object, mouseStop *py.Object) *py.Object

Blocking call to interact with a figure.

Wait until the user clicks *n* times on the figure, and return the coordinates of each click in a list.

There are three possible interactions:

- Add a point. - Remove the most recently added point. - Stop the interaction and return the points added so far.

The actions are assigned to mouse buttons via the arguments *mouse_add*, *mouse_pop* and *mouse_stop*.

Parameters ---------- n : int, default: 1

Number of mouse clicks to accumulate. If negative, accumulate
clicks until the input is terminated manually.

timeout : float, default: 30 seconds

Number of seconds to wait before timing out. If zero or negative
will never time out.

show_clicks : bool, default: True

If True, show a red cross at the location of each click.

mouse_add : `.MouseButton` or None, default: `.MouseButton.LEFT`

Mouse button used to add points.

mouse_pop : `.MouseButton` or None, default: `.MouseButton.RIGHT`

Mouse button used to remove the most recently added point.

mouse_stop : `.MouseButton` or None, default: `.MouseButton.MIDDLE`

Mouse button used to stop input.

Returns ------- list of tuples

A list of the clicked (x, y) coordinates.

Notes ----- The keyboard can also be used to select points in case your mouse does not have one or more of the buttons. The delete and backspace keys act like right-clicking (i.e., remove last point), the enter key terminates input and any other key (not already used by the window manager) selects a point.

func Gray

func Gray() *py.Object

Set the colormap to 'gray'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Grid

func Grid(visible *py.Object, which *py.Object, axis *py.Object) *py.Object

Configure the grid lines.

Parameters ---------- visible : bool or None, optional

Whether to show the grid lines.  If any *kwargs* are supplied, it
is assumed you want the grid on and *visible* will be set to True.

If *visible* is *None* and there are no *kwargs*, this toggles the
visibility of the lines.

which : {'major', 'minor', 'both'}, optional

The grid lines to apply the changes on.

axis : {'both', 'x', 'y'}, optional

The axis to apply the changes on.

**kwargs : `~matplotlib.lines.Line2D` properties

Define the line properties of the grid, e.g.::

    grid(color='r', linestyle='-', linewidth=2)

Valid keyword arguments are:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

Notes ----- The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of each axis, not by the zorder of the `.Line2D` objects comprising the grid. Therefore, to set grid zorder, use `.set_axisbelow` or, for more control, call the `~.Artist.set_zorder` method of each axis.

func Hexbin

func Hexbin(x *py.Object, y *py.Object, C *py.Object, gridsize *py.Object, bins *py.Object, xscale *py.Object, yscale *py.Object, extent *py.Object, cmap *py.Object, norm *py.Object, vmin *py.Object, vmax *py.Object, alpha *py.Object, linewidths *py.Object, edgecolors *py.Object, reduceCFunction *py.Object, mincnt *py.Object, marginals *py.Object) *py.Object

Make a 2D hexagonal binning plot of points *x*, *y*.

If *C* is *None*, the value of the hexagon is determined by the number of points in the hexagon. Otherwise, *C* specifies values at the coordinate (x[i], y[i]). For each hexagon, these values are reduced using *reduce_C_function*.

Parameters ---------- x, y : array-like

The data positions. *x* and *y* must be of the same length.

C : array-like, optional

If given, these values are accumulated in the bins. Otherwise,
every point has a value of 1. Must be of the same length as *x*
and *y*.

gridsize : int or (int, int), default: 100

If a single int, the number of hexagons in the *x*-direction.
The number of hexagons in the *y*-direction is chosen such that
the hexagons are approximately regular.

Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
in the *x*-direction and the *y*-direction. In the
*y*-direction, counting is done along vertically aligned
hexagons, not along the zig-zag chains of hexagons; see the
following illustration.

.. plot::

   import numpy
   import matplotlib.pyplot as plt

   np.random.seed(19680801)
   n= 300
   x = np.random.standard_normal(n)
   y = np.random.standard_normal(n)

   fig, ax = plt.subplots(figsize=(4, 4))
   h = ax.hexbin(x, y, gridsize=(5, 3))
   hx, hy = h.get_offsets().T
   ax.plot(hx[24::3], hy[24::3], 'ro-')
   ax.plot(hx[-3:], hy[-3:], 'ro-')
   ax.set_title('gridsize=(5, 3)')
   ax.axis('off')

To get approximately regular hexagons, choose
:math:`n_x = \sqrt{3}\,n_y`.

bins : 'log' or int or sequence, default: None

Discretization of the hexagon values.

- If *None*, no binning is applied; the color of each hexagon
  directly corresponds to its count value.
- If 'log', use a logarithmic scale for the colormap.
  Internally, :math:`log_{10}(i+1)` is used to determine the
  hexagon color. This is equivalent to ``norm=LogNorm()``.
- If an integer, divide the counts in the specified number
  of bins, and color the hexagons accordingly.
- If a sequence of values, the values of the lower bound of
  the bins to be used.

xscale : {'linear', 'log'}, default: 'linear'

Use a linear or log10 scale on the horizontal axis.

yscale : {'linear', 'log'}, default: 'linear'

Use a linear or log10 scale on the vertical axis.

mincnt : int >= 0, default: *None*

If not *None*, only display cells with at least *mincnt*
number of points in the cell.

marginals : bool, default: *False*

If marginals is *True*, plot the marginal density as
colormapped rectangles along the bottom of the x-axis and
left of the y-axis.

extent : 4-tuple of float, default: *None*

The limits of the bins (xmin, xmax, ymin, ymax).
The default assigns the limits based on
*gridsize*, *x*, *y*, *xscale* and *yscale*.

If *xscale* or *yscale* is set to 'log', the limits are
expected to be the exponent for a power of 10. E.g. for
x-limits of 1 and 50 in 'linear' scale and y-limits
of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).

Returns ------- `~matplotlib.collections.PolyCollection`

A `.PolyCollection` defining the hexagonal bins.

- `.PolyCollection.get_offsets` contains a Mx2 array containing
  the x, y positions of the M hexagon centers.
- `.PolyCollection.get_array` contains the values of the M
  hexagons.

If *marginals* is *True*, horizontal
bar and vertical bar (both PolyCollections) will be attached
to the return collection as attributes *hbar* and *vbar*.

Other Parameters ---------------- cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

alpha : float between 0 and 1, optional

The alpha blending value, between 0 (transparent) and 1 (opaque).

linewidths : float, default: *None*

If *None*, defaults to :rc:`patch.linewidth`.

edgecolors : {'face', 'none', *None*} or color, default: 'face'

The color of the hexagon edges. Possible values are:

- 'face': Draw the edges in the same color as the fill color.
- 'none': No edges are drawn. This can sometimes lead to unsightly
  unpainted pixels between the hexagons.
- *None*: Draw outlines in the default color.
- An explicit color.

reduce_C_function : callable, default: `numpy.mean`

The function to aggregate *C* within the bins. It is ignored if
*C* is not given. This must have the signature::

    def reduce_C_function(C: array) -> float

Commonly used functions are:

- `numpy.mean`: average of the points
- `numpy.sum`: integral of the point values
- `numpy.amax`: value taken from the largest point

By default will only reduce cells with at least 1 point because some
reduction functions (such as `numpy.amax`) will error/warn with empty
input. Changing *mincnt* will adjust the cutoff, and if set to 0 will
pass empty input to the reduction function.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*, *C*

**kwargs : `~matplotlib.collections.PolyCollection` properties

All other keyword arguments are passed on to `.PolyCollection`:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

See Also -------- hist2d : 2D histogram rectangular bins

func Hist

func Hist(x *py.Object, bins *py.Object, range_ *py.Object, density *py.Object, weights *py.Object, cumulative *py.Object, bottom *py.Object, histtype *py.Object, align *py.Object, orientation *py.Object, rwidth *py.Object, log *py.Object, color *py.Object, label *py.Object, stacked *py.Object) *py.Object

Compute and plot a histogram.

This method uses `numpy.histogram` to bin the data in *x* and count the number of values in each bin, then draws the distribution either as a `.BarContainer` or `.Polygon`. The *bins*, *range*, *density*, and *weights* parameters are forwarded to `numpy.histogram`.

If the data has already been binned and counted, use `~.bar` or `~.stairs` to plot the distribution::

counts, bins = np.histogram(x)
plt.stairs(counts, bins)

Alternatively, plot pre-computed bins and counts using “hist()“ by treating each bin as a single point with a weight equal to its count::

plt.hist(bins[:-1], bins, weights=counts)

The data input *x* can be a singular array, a list of datasets of potentially different lengths ([*x0*, *x1*, ...]), or a 2D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative to the list form. If the input is an array, then the return value is a tuple (*n*, *bins*, *patches*); if the input is a sequence of arrays, then the return value is a tuple ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*, ...]).

Masked arrays are not supported.

Parameters ---------- x : (n,) array or sequence of (n,) arrays

Input values, this takes either a single array or a sequence of
arrays which are not required to be of the same length.

bins : int or sequence or str, default: :rc:`hist.bins`

If *bins* is an integer, it defines the number of equal-width bins
in the range.

If *bins* is a sequence, it defines the bin edges, including the
left edge of the first bin and the right edge of the last bin;
in this case, bins may be unequally spaced.  All but the last
(righthand-most) bin is half-open.  In other words, if *bins* is::

    [1, 2, 3, 4]

then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
the second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which
*includes* 4.

If *bins* is a string, it is one of the binning strategies
supported by `numpy.histogram_bin_edges`: 'auto', 'fd', 'doane',
'scott', 'stone', 'rice', 'sturges', or 'sqrt'.

range : tuple or None, default: None

The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is ``(x.min(), x.max())``.
Range has no effect if *bins* is a sequence.

If *bins* is a sequence or *range* is specified, autoscaling
is based on the specified bin range instead of the
range of x.

density : bool, default: False

If ``True``, draw and return a probability density: each bin
will display the bin's raw count divided by the total number of
counts *and the bin width*
(``density = counts / (sum(counts) * np.diff(bins))``),
so that the area under the histogram integrates to 1
(``np.sum(density * np.diff(bins)) == 1``).

If *stacked* is also ``True``, the sum of the histograms is
normalized to 1.

weights : (n,) array-like or None, default: None

An array of weights, of the same shape as *x*.  Each value in
*x* only contributes its associated weight towards the bin count
(instead of 1).  If *density* is ``True``, the weights are
normalized, so that the integral of the density over the range
remains 1.

cumulative : bool or -1, default: False

If ``True``, then a histogram is computed where each bin gives the
counts in that bin plus all bins for smaller values. The last bin
gives the total number of datapoints.

If *density* is also ``True`` then the histogram is normalized such
that the last bin equals 1.

If *cumulative* is a number less than 0 (e.g., -1), the direction
of accumulation is reversed.  In this case, if *density* is also
``True``, then the histogram is normalized such that the first bin
equals 1.

bottom : array-like, scalar, or None, default: None

Location of the bottom of each bin, i.e. bins are drawn from
``bottom`` to ``bottom + hist(x, bins)`` If a scalar, the bottom
of each bin is shifted by the same amount. If an array, each bin
is shifted independently and the length of bottom must match the
number of bins. If None, defaults to 0.

histtype : {'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar'

The type of histogram to draw.

- 'bar' is a traditional bar-type histogram.  If multiple data
  are given the bars are arranged side by side.
- 'barstacked' is a bar-type histogram where multiple
  data are stacked on top of each other.
- 'step' generates a lineplot that is by default unfilled.
- 'stepfilled' generates a lineplot that is by default filled.

align : {'left', 'mid', 'right'}, default: 'mid'

The horizontal alignment of the histogram bars.

- 'left': bars are centered on the left bin edges.
- 'mid': bars are centered between the bin edges.
- 'right': bars are centered on the right bin edges.

orientation : {'vertical', 'horizontal'}, default: 'vertical'

If 'horizontal', `~.Axes.barh` will be used for bar-type histograms
and the *bottom* kwarg will be the left edges.

rwidth : float or None, default: None

The relative width of the bars as a fraction of the bin width.  If
``None``, automatically compute the width.

Ignored if *histtype* is 'step' or 'stepfilled'.

log : bool, default: False

If ``True``, the histogram axis will be set to a log scale.

color : color or array-like of colors or None, default: None

Color or sequence of colors, one per dataset.  Default (``None``)
uses the standard line color sequence.

label : str or None, default: None

String, or sequence of strings to match multiple datasets.  Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that `~.Axes.legend` will work as expected.

stacked : bool, default: False

If ``True``, multiple data are stacked on top of each other If
``False`` multiple data are arranged side by side if histtype is
'bar' or on top of each other if histtype is 'step'

Returns ------- n : array or list of arrays

The values of the histogram bins. See *density* and *weights* for a
description of the possible semantics.  If input *x* is an array,
then this is an array of length *nbins*. If input is a sequence of
arrays ``[data1, data2, ...]``, then this is a list of arrays with
the values of the histograms for each of the arrays in the same
order.  The dtype of the array *n* (or of its element arrays) will
always be float even if no weighting or normalization is used.

bins : array

The edges of the bins. Length nbins + 1 (nbins left edges and right
edge of last bin).  Always a single array even when multiple data
sets are passed in.

patches : `.BarContainer` or list of a single `.Polygon` or list of such objects

Container of individual artists used to create the histogram
or list of such containers if there are multiple input datasets.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *weights*

**kwargs

`~matplotlib.patches.Patch` properties

See Also -------- hist2d : 2D histogram with rectangular bins hexbin : 2D histogram with hexagonal bins stairs : Plot a pre-computed histogram bar : Plot a pre-computed histogram

Notes ----- For large numbers of bins (>1000), plotting can be significantly accelerated by using `~.Axes.stairs` to plot a pre-computed histogram (“plt.stairs(*np.histogram(data))“), or by setting *histtype* to 'step' or 'stepfilled' rather than 'bar' or 'barstacked'.

func Hist2d

func Hist2d(x *py.Object, y *py.Object, bins *py.Object, range_ *py.Object, density *py.Object, weights *py.Object, cmin *py.Object, cmax *py.Object) *py.Object

Make a 2D histogram plot.

Parameters ---------- x, y : array-like, shape (n, )

Input values

bins : None or int or [int, int] or array-like or [array, array]

The bin specification:

- If int, the number of bins for the two dimensions
  (``nx = ny = bins``).
- If ``[int, int]``, the number of bins in each dimension
  (``nx, ny = bins``).
- If array-like, the bin edges for the two dimensions
  (``x_edges = y_edges = bins``).
- If ``[array, array]``, the bin edges in each dimension
  (``x_edges, y_edges = bins``).

The default value is 10.

range : array-like shape(2, 2), optional

The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): ``[[xmin,
xmax], [ymin, ymax]]``. All values outside of this range will be
considered outliers and not tallied in the histogram.

density : bool, default: False

Normalize histogram.  See the documentation for the *density*
parameter of `~.Axes.hist` for more details.

weights : array-like, shape (n, ), optional

An array of values w_i weighing each sample (x_i, y_i).

cmin, cmax : float, default: None

All bins that has count less than *cmin* or more than *cmax* will not be
displayed (set to NaN before passing to `~.Axes.pcolormesh`) and these count
values in the return value count histogram will also be set to nan upon
return.

Returns ------- h : 2D array

The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are
histogrammed along the second dimension.

xedges : 1D array

The bin edges along the x-axis.

yedges : 1D array

The bin edges along the y-axis.

image : `~.matplotlib.collections.QuadMesh`

Other Parameters ---------------- cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

alpha : “0 <= scalar <= 1“ or “None“, optional

The alpha blending value.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*, *weights*

**kwargs

Additional parameters are passed along to the
`~.Axes.pcolormesh` method and `~matplotlib.collections.QuadMesh`
constructor.

See Also -------- hist : 1D histogram plotting hexbin : 2D histogram with hexagonal bins

Notes -----

  • Currently “hist2d“ calculates its own axis limits, and any limits previously set are ignored.
  • Rendering the histogram with a logarithmic color scale is accomplished by passing a `.colors.LogNorm` instance to the *norm* keyword argument. Likewise, power-law normalization (similar in effect to gamma correction) can be accomplished with `.colors.PowerNorm`.

func Hlines

func Hlines(y *py.Object, xmin *py.Object, xmax *py.Object, colors *py.Object, linestyles *py.Object, label *py.Object) *py.Object

Plot horizontal lines at each *y* from *xmin* to *xmax*.

Parameters ---------- y : float or array-like

y-indexes where to plot the lines.

xmin, xmax : float or array-like

Respective beginning and end of each line. If scalars are
provided, all lines will have the same length.

colors : color or list of colors, default: :rc:`lines.color`

linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, default: 'solid'

label : str, default: ”

Returns ------- `~matplotlib.collections.LineCollection`

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*y*, *xmin*, *xmax*, *colors*

**kwargs : `~matplotlib.collections.LineCollection` properties.

See Also -------- vlines : vertical lines axhline : horizontal line across the Axes

func Hot

func Hot() *py.Object

Set the colormap to 'hot'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Hsv

func Hsv() *py.Object

Set the colormap to 'hsv'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Imread

func Imread(fname *py.Object, format *py.Object) *py.Object

Read an image from a file into an array.

.. note::

This function exists for historical reasons.  It is recommended to
use `PIL.Image.open` instead for loading images.

Parameters ---------- fname : str or file-like

The image file to read: a filename, a URL or a file-like object opened
in read-binary mode.

Passing a URL is deprecated.  Please open the URL
for reading and pass the result to Pillow, e.g. with
``np.array(PIL.Image.open(urllib.request.urlopen(url)))``.

format : str, optional

The image file format assumed for reading the data.  The image is
loaded as a PNG file if *format* is set to "png", if *fname* is a path
or opened file with a ".png" extension, or if it is a URL.  In all
other cases, *format* is ignored and the format is auto-detected by
`PIL.Image.open`.

Returns ------- `numpy.array`

The image data. The returned array has shape

- (M, N) for grayscale images.
- (M, N, 3) for RGB images.
- (M, N, 4) for RGBA images.

PNG images are returned as float arrays (0-1).  All other formats are
returned as int arrays, with a bit depth determined by the file's
contents.

func Imsave

func Imsave(fname *py.Object, arr *py.Object) *py.Object

Colormap and save an array as an image file.

RGB(A) images are passed through. Single channel images will be colormapped according to *cmap* and *norm*.

.. note::

If you want to save a single channel image as gray scale please use an
image I/O library (such as pillow, tifffile, or imageio) directly.

Parameters ---------- fname : str or path-like or file-like

A path or a file-like object to store the image in.
If *format* is not set, then the output format is inferred from the
extension of *fname*, if any, and from :rc:`savefig.format` otherwise.
If *format* is set, it determines the output format.

arr : array-like

The image data. The shape can be one of
MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA).

vmin, vmax : float, optional

*vmin* and *vmax* set the color scaling for the image by fixing the
values that map to the colormap color limits. If either *vmin*
or *vmax* is None, that limit is determined from the *arr*
min/max value.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

A Colormap instance or registered colormap name. The colormap
maps scalar data to colors. It is ignored for RGB(A) data.

format : str, optional

The file format, e.g. 'png', 'pdf', 'svg', ...  The behavior when this
is unset is documented under *fname*.

origin : {'upper', 'lower'}, default: :rc:`image.origin`

Indicates whether the ``(0, 0)`` index of the array is in the upper
left or lower left corner of the axes.

dpi : float

The DPI to store in the metadata of the file.  This does not affect the
resolution of the output image.  Depending on file format, this may be
rounded to the nearest integer.

metadata : dict, optional

Metadata in the image file.  The supported keys depend on the output
format, see the documentation of the respective backends for more
information.
Currently only supported for "png", "pdf", "ps", "eps", and "svg".

pil_kwargs : dict, optional

Keyword arguments passed to `PIL.Image.Image.save`.  If the 'pnginfo'
key is present, it completely overrides *metadata*, including the
default 'Software' key.

func Imshow

func Imshow(X *py.Object, cmap *py.Object, norm *py.Object) *py.Object

Display data as an image, i.e., on a 2D regular raster.

The input may either be actual RGB(A) data, or 2D scalar data, which will be rendered as a pseudocolor image. For displaying a grayscale image, set up the colormapping using the parameters “cmap='gray', vmin=0, vmax=255“.

The number of pixels used to render an image is set by the Axes size and the figure *dpi*. This can lead to aliasing artifacts when the image is resampled, because the displayed image size will usually not match the size of *X* (see :doc:`/gallery/images_contours_and_fields/image_antialiasing`). The resampling can be controlled via the *interpolation* parameter and/or :rc:`image.interpolation`.

Parameters ---------- X : array-like or PIL image

The image data. Supported array shapes are:

- (M, N): an image with scalar data. The values are mapped to
  colors using normalization and a colormap. See parameters *norm*,
  *cmap*, *vmin*, *vmax*.
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
  i.e. including transparency.

The first two dimensions (M, N) define the rows and columns of
the image.

Out-of-range RGB(A) values are clipped.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *X* is RGB(A).

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *X* is RGB(A).

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

This parameter is ignored if *X* is RGB(A).

aspect : {'equal', 'auto'} or float or None, default: None

The aspect ratio of the Axes.  This parameter is particularly
relevant for images since it determines whether data pixels are
square.

This parameter is a shortcut for explicitly calling
`.Axes.set_aspect`. See there for further details.

- 'equal': Ensures an aspect ratio of 1. Pixels will be square
  (unless pixel sizes are explicitly made non-square in data
  coordinates using *extent*).
- 'auto': The Axes is kept fixed and the aspect is adjusted so
  that the data fit in the Axes. In general, this will result in
  non-square pixels.

Normally, None (the default) means to use :rc:`image.aspect`.  However, if
the image uses a transform that does not contain the axes data transform,
then None means to not modify the axes aspect at all (in that case, directly
call `.Axes.set_aspect` if desired).

interpolation : str, default: :rc:`image.interpolation`

The interpolation method used.

Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
'sinc', 'lanczos', 'blackman'.

The data *X* is resampled to the pixel size of the image on the
figure canvas, using the interpolation method to either up- or
downsample the data.

If *interpolation* is 'none', then for the ps, pdf, and svg
backends no down- or upsampling occurs, and the image data is
passed to the backend as a native image.  Note that different ps,
pdf, and svg viewers may display these raw pixels differently. On
other backends, 'none' is the same as 'nearest'.

If *interpolation* is the default 'antialiased', then 'nearest'
interpolation is used if the image is upsampled by more than a
factor of three (i.e. the number of display pixels is at least
three times the size of the data array).  If the upsampling rate is
smaller than 3, or the image is downsampled, then 'hanning'
interpolation is used to act as an anti-aliasing filter, unless the
image happens to be upsampled by exactly a factor of two or one.

See
:doc:`/gallery/images_contours_and_fields/interpolation_methods`
for an overview of the supported interpolation methods, and
:doc:`/gallery/images_contours_and_fields/image_antialiasing` for
a discussion of image antialiasing.

Some interpolation methods require an additional radius parameter,
which can be set by *filterrad*. Additionally, the antigrain image
resize filter is controlled by the parameter *filternorm*.

interpolation_stage : {'data', 'rgba'}, default: 'data'

If 'data', interpolation
is carried out on the data provided by the user.  If 'rgba', the
interpolation is carried out after the colormapping has been
applied (visual interpolation).

alpha : float or array-like, optional

The alpha blending value, between 0 (transparent) and 1 (opaque).
If *alpha* is an array, the alpha blending values are applied pixel
by pixel, and *alpha* must have the same shape as *X*.

origin : {'upper', 'lower'}, default: :rc:`image.origin`

Place the [0, 0] index of the array in the upper left or lower
left corner of the Axes. The convention (the default) 'upper' is
typically used for matrices and images.

Note that the vertical axis points upward for 'lower'
but downward for 'upper'.

See the :ref:`imshow_extent` tutorial for
examples and a more detailed description.

extent : floats (left, right, bottom, top), optional

The bounding box in data coordinates that the image will fill.
These values may be unitful and match the units of the Axes.
The image is stretched individually along x and y to fill the box.

The default extent is determined by the following conditions.
Pixels have unit size in data coordinates. Their centers are on
integer coordinates, and their center coordinates range from 0 to
columns-1 horizontally and from 0 to rows-1 vertically.

Note that the direction of the vertical axis and thus the default
values for top and bottom depend on *origin*:

- For ``origin == 'upper'`` the default is
  ``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
- For ``origin == 'lower'`` the default is
  ``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.

See the :ref:`imshow_extent` tutorial for
examples and a more detailed description.

filternorm : bool, default: True

A parameter for the antigrain image resize filter (see the
antigrain documentation).  If *filternorm* is set, the filter
normalizes integer values and corrects the rounding errors. It
doesn't do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means
that any sum of pixel weights must be equal to 1.0.  So, the
filter function must produce a graph of the proper shape.

filterrad : float > 0, default: 4.0

The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

resample : bool, default: :rc:`image.resample`

When *True*, use a full resampling method.  When *False*, only
resample when the output image is larger than the input image.

url : str, optional

Set the url of the created `.AxesImage`. See `.Artist.set_url`.

Returns ------- `~matplotlib.image.AxesImage`

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs : `~matplotlib.artist.Artist` properties

These parameters are passed on to the constructor of the
`.AxesImage` artist.

See Also -------- matshow : Plot a matrix or an array as an image.

Notes ----- Unless *extent* is used, pixel centers will be located at integer coordinates. In other words: the origin will coincide with the center of pixel (0, 0).

There are two common representations for RGB images with an alpha channel:

  • Straight (unassociated) alpha: R, G, and B channels represent the color of the pixel, disregarding its opacity.
  • Premultiplied (associated) alpha: R, G, and B channels represent the color of the pixel, adjusted for its opacity by multiplication.

`~matplotlib.pyplot.imshow` expects RGB images adopting the straight (unassociated) alpha representation.

func Inferno

func Inferno() *py.Object

Set the colormap to 'inferno'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func InstallReplDisplayhook

func InstallReplDisplayhook() *py.Object

Connect to the display hook of the current shell.

The display hook gets called when the read-evaluate-print-loop (REPL) of the shell has finished the execution of a command. We use this callback to be able to automatically update a figure in interactive mode.

This works both with IPython and with vanilla python shells.

func Interactive

func Interactive(b *py.Object) *py.Object

Set whether to redraw after every plotting command (e.g. `.pyplot.xlabel`).

func Ioff

func Ioff() *py.Object

Disable interactive mode.

See `.pyplot.isinteractive` for more details.

See Also -------- ion : Enable interactive mode. isinteractive : Whether interactive mode is enabled. show : Show all figures (and maybe block). pause : Show all figures, and block for a time.

Notes ----- For a temporary change, this can be used as a context manager::

# if interactive mode is on
# then figures will be shown on creation
plt.ion()
# This figure will be shown immediately
fig = plt.figure()

with plt.ioff():
    # interactive mode will be off
    # figures will not automatically be shown
    fig2 = plt.figure()
    # ...

To enable optional usage as a context manager, this function returns a `~contextlib.ExitStack` object, which is not intended to be stored or accessed by the user.

func Ion

func Ion() *py.Object

Enable interactive mode.

See `.pyplot.isinteractive` for more details.

See Also -------- ioff : Disable interactive mode. isinteractive : Whether interactive mode is enabled. show : Show all figures (and maybe block). pause : Show all figures, and block for a time.

Notes ----- For a temporary change, this can be used as a context manager::

# if interactive mode is off
# then figures will not be shown on creation
plt.ioff()
# This figure will not be shown immediately
fig = plt.figure()

with plt.ion():
    # interactive mode will be on
    # figures will automatically be shown
    fig2 = plt.figure()
    # ...

To enable optional usage as a context manager, this function returns a `~contextlib.ExitStack` object, which is not intended to be stored or accessed by the user.

func Isinteractive

func Isinteractive() *py.Object

Return whether plots are updated after every plotting command.

The interactive mode is mainly useful if you build plots from the command line and want to see the effect of each command while you are building the figure.

In interactive mode:

- newly created figures will be shown immediately; - figures will automatically redraw on change; - `.pyplot.show` will not block by default.

In non-interactive mode:

  • newly created figures and changes to figures will not be reflected until explicitly asked to be;
  • `.pyplot.show` will block by default.

See Also -------- ion : Enable interactive mode. ioff : Disable interactive mode. show : Show all figures (and maybe block). pause : Show all figures, and block for a time.

func Jet

func Jet() *py.Object

Set the colormap to 'jet'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Legend

func Legend(__llgo_va_list ...interface{}) *py.Object

Place a legend on the Axes.

Call signatures::

legend()
legend(handles, labels)
legend(handles=handles)
legend(labels)

The call signatures correspond to the following different ways to use this method:

**1. Automatic detection of elements to be shown in the legend**

The elements to be added to the legend are automatically determined, when you do not pass in any extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or by calling the :meth:`~.Artist.set_label` method on the artist::

ax.plot([1, 2, 3], label='Inline label')
ax.legend()

or::

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
ax.legend()

.. note::

Specific artists can be excluded from the automatic legend element
selection by using a label starting with an underscore, "_".
A string starting with an underscore is the default label for all
artists, so calling `.Axes.legend` without any arguments and
without setting the labels manually will result in no legend being
drawn.

**2. Explicitly listing the artists and labels in the legend**

For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists followed by an iterable of legend labels respectively::

ax.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

**3. Explicitly listing the artists in the legend**

This is similar to 2, but the labels are taken from the artists' label properties. Example::

line1, = ax.plot([1, 2, 3], label='label1')
line2, = ax.plot([1, 2, 3], label='label2')
ax.legend(handles=[line1, line2])

**4. Labeling existing plot elements**

.. admonition:: Discouraged

This call signature is discouraged, because the relation between
plot elements and labels is only implicit by their order and can
easily be mixed up.

To make a legend for all artists on an Axes, call this function with an iterable of strings, one for each legend item. For example::

ax.plot([1, 2, 3])
ax.plot([5, 6, 7])
ax.legend(['First line', 'Second line'])

Parameters ---------- handles : list of (`.Artist` or tuple of `.Artist`), optional

A list of Artists (lines, patches) to be added to the legend.
Use this together with *labels*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.

The length of handles and labels should be the same in this
case. If they are not, they are truncated to the smaller length.

If an entry contains a tuple, then the legend handler for all Artists in the
tuple will be placed alongside a single label.

labels : list of str, optional

A list of labels to show next to the artists.
Use this together with *handles*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.

Returns ------- `~matplotlib.legend.Legend`

Other Parameters ----------------

loc : str or pair of floats, default: :rc:`legend.loc`

The location of the legend.

The strings ``'upper left'``, ``'upper right'``, ``'lower left'``,
``'lower right'`` place the legend at the corresponding corner of the
axes.

The strings ``'upper center'``, ``'lower center'``, ``'center left'``,
``'center right'`` place the legend at the center of the corresponding edge
of the axes.

The string ``'center'`` places the legend at the center of the axes.

The string ``'best'`` places the legend at the location, among the nine
locations defined so far, with the minimum overlap with other drawn
artists.  This option can be quite slow for plots with large amounts of
data; your plotting speed may benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left
corner of the legend in axes coordinates (in which case *bbox_to_anchor*
will be ignored).

For back-compatibility, ``'center right'`` (but no other location) can also
be spelled ``'right'``, and each "string" location can also be given as a
numeric value:

==================   =============
Location String      Location Code
==================   =============
'best' (Axes only)   0
'upper right'        1
'upper left'         2
'lower left'         3
'lower right'        4
'right'              5
'center left'        6
'center right'       7
'lower center'       8
'upper center'       9
'center'             10
==================   =============

bbox_to_anchor : `.BboxBase`, 2-tuple, or 4-tuple of floats

Box that is used to position the legend in conjunction with *loc*.
Defaults to `axes.bbox` (if called as a method to `.Axes.legend`) or
`figure.bbox` (if `.Figure.legend`).  This argument allows arbitrary
placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
*bbox_transform*, with the default transform
Axes or Figure coordinates, depending on which ``legend`` is called.

If a 4-tuple or `.BboxBase` is given, then it specifies the bbox
``(x, y, width, height)`` that the legend is placed in.
To put the legend in the best location in the bottom right
quadrant of the axes (or figure)::

    loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple ``(x, y)`` places the corner of the legend specified by *loc* at
x, y.  For example, to put the legend's upper right-hand corner in the
center of the axes (or figure) the following keywords can be used::

    loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncols : int, default: 1

The number of columns that the legend has.

For backward compatibility, the spelling *ncol* is also supported
but it is discouraged. If both are given, *ncols* takes precedence.

prop : None or `~matplotlib.font_manager.FontProperties` or dict

The font properties of the legend. If None (default), the current
:data:`matplotlib.rcParams` will be used.

fontsize : int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}

The font size of the legend. If the value is numeric the size will be the
absolute font size in points. String values are relative to the current
default font size. This argument is only used if *prop* is not specified.

labelcolor : str or list, default: :rc:`legend.labelcolor`

The color of the text in the legend. Either a valid color string
(for example, 'red'), or a list of color strings. The labelcolor can
also be made to match the color of the line or marker using 'linecolor',
'markerfacecolor' (or 'mfc'), or 'markeredgecolor' (or 'mec').

Labelcolor can be set globally using :rc:`legend.labelcolor`. If None,
use :rc:`text.color`.

numpoints : int, default: :rc:`legend.numpoints`

The number of marker points in the legend when creating a legend
entry for a `.Line2D` (line).

scatterpoints : int, default: :rc:`legend.scatterpoints`

The number of marker points in the legend when creating
a legend entry for a `.PathCollection` (scatter plot).

scatteryoffsets : iterable of floats, default: “[0.375, 0.5, 0.3125]“

The vertical offset (relative to the font size) for the markers
created for a scatter plot legend entry. 0.0 is at the base the
legend text, and 1.0 is at the top. To draw all markers at the
same height, set to ``[0.5]``.

markerscale : float, default: :rc:`legend.markerscale`

The relative size of legend markers compared to the originally drawn ones.

markerfirst : bool, default: True

If *True*, legend marker is placed to the left of the legend label.
If *False*, legend marker is placed to the right of the legend label.

reverse : bool, default: False

If *True*, the legend labels are displayed in reverse order from the input.
If *False*, the legend labels are displayed in the same order as the input.

.. versionadded:: 3.7

frameon : bool, default: :rc:`legend.frameon`

Whether the legend should be drawn on a patch (frame).

fancybox : bool, default: :rc:`legend.fancybox`

Whether round edges should be enabled around the `.FancyBboxPatch` which
makes up the legend's background.

shadow : None, bool or dict, default: :rc:`legend.shadow`

Whether to draw a shadow behind the legend.
The shadow can be configured using `.Patch` keywords.
Customization via :rc:`legend.shadow` is currently not supported.

framealpha : float, default: :rc:`legend.framealpha`

The alpha transparency of the legend's background.
If *shadow* is activated and *framealpha* is ``None``, the default value is
ignored.

facecolor : "inherit" or color, default: :rc:`legend.facecolor`

The legend's background color.
If ``"inherit"``, use :rc:`axes.facecolor`.

edgecolor : "inherit" or color, default: :rc:`legend.edgecolor`

The legend's background patch edge color.
If ``"inherit"``, use take :rc:`axes.edgecolor`.

mode : {"expand", None}

If *mode* is set to ``"expand"`` the legend will be horizontally
expanded to fill the axes area (or *bbox_to_anchor* if defines
the legend's size).

bbox_transform : None or `~matplotlib.transforms.Transform`

The transform for the bounding box (*bbox_to_anchor*). For a value
of ``None`` (default) the Axes'
:data:`~matplotlib.axes.Axes.transAxes` transform will be used.

title : str or None

The legend's title. Default is no title (``None``).

title_fontproperties : None or `~matplotlib.font_manager.FontProperties` or dict

The font properties of the legend's title. If None (default), the
*title_fontsize* argument will be used if present; if *title_fontsize* is
also None, the current :rc:`legend.title_fontsize` will be used.

title_fontsize : int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default: :rc:`legend.title_fontsize`

The font size of the legend's title.
Note: This cannot be combined with *title_fontproperties*. If you want
to set the fontsize alongside other font properties, use the *size*
parameter in *title_fontproperties*.

alignment : {'center', 'left', 'right'}, default: 'center'

The alignment of the legend title and the box of entries. The entries
are aligned as a single block, so that markers always lined up.

borderpad : float, default: :rc:`legend.borderpad`

The fractional whitespace inside the legend border, in font-size units.

labelspacing : float, default: :rc:`legend.labelspacing`

The vertical space between the legend entries, in font-size units.

handlelength : float, default: :rc:`legend.handlelength`

The length of the legend handles, in font-size units.

handleheight : float, default: :rc:`legend.handleheight`

The height of the legend handles, in font-size units.

handletextpad : float, default: :rc:`legend.handletextpad`

The pad between the legend handle and text, in font-size units.

borderaxespad : float, default: :rc:`legend.borderaxespad`

The pad between the axes and legend border, in font-size units.

columnspacing : float, default: :rc:`legend.columnspacing`

The spacing between columns, in font-size units.

handler_map : dict or None

The custom dictionary mapping instances or types to a legend
handler. This *handler_map* updates the default handler map
found at `matplotlib.legend.Legend.get_legend_handler_map`.

draggable : bool, default: False

Whether the legend can be dragged with the mouse.

See Also -------- .Figure.legend

Notes ----- Some artists are not supported by this function. See :ref:`legend_guide` for details.

Examples -------- .. plot:: gallery/text_labels_and_annotations/legend.py

func LocatorParams

func LocatorParams(axis *py.Object, tight *py.Object) *py.Object

Control behavior of major tick locators.

Because the locator is involved in autoscaling, `~.Axes.autoscale_view` is called automatically after the parameters are changed.

Parameters ---------- axis : {'both', 'x', 'y'}, default: 'both'

The axis on which to operate.  (For 3D Axes, *axis* can also be
set to 'z', and 'both' refers to all three axes.)

tight : bool or None, optional

Parameter passed to `~.Axes.autoscale_view`.
Default is None, for no change.

Other Parameters ---------------- **kwargs

Remaining keyword arguments are passed to directly to the
``set_params()`` method of the locator. Supported keywords depend
on the type of the locator. See for example
`~.ticker.MaxNLocator.set_params` for the `.ticker.MaxNLocator`
used by default for linear.

Examples -------- When plotting small subplots, one might want to reduce the maximum number of ticks and use tight bounds, for example::

ax.locator_params(tight=True, nbins=4)

func Loglog

func Loglog(__llgo_va_list ...interface{}) *py.Object

Make a plot with log scaling on both the x- and y-axis.

Call signatures::

loglog([x], y, [fmt], data=None, **kwargs)
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around `.plot` which additionally changes both the x-axis and the y-axis to log scaling. All the concepts and parameters of plot can be used here as well.

The additional parameters *base*, *subs* and *nonpositive* control the x/y-axis properties. They are just forwarded to `.Axes.set_xscale` and `.Axes.set_yscale`. To use different properties on the x-axis and the y-axis, use e.g. “ax.set_xscale("log", base=10); ax.set_yscale("log", base=2)“.

Parameters ---------- base : float, default: 10

Base of the logarithm.

subs : sequence, optional

The location of the minor ticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_xscale`/`.Axes.set_yscale` for details.

nonpositive : {'mask', 'clip'}, default: 'clip'

Non-positive values can be masked as invalid, or clipped to a very
small positive number.

**kwargs

All parameters supported by `.plot`.

Returns ------- list of `.Line2D`

Objects representing the plotted data.

func Magma

func Magma() *py.Object

Set the colormap to 'magma'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func MagnitudeSpectrum

func MagnitudeSpectrum(x *py.Object, Fs *py.Object, Fc *py.Object, window *py.Object, padTo *py.Object, sides *py.Object, scale *py.Object) *py.Object

Plot the magnitude spectrum.

Compute the magnitude spectrum of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal.

Parameters ---------- x : 1-D array or sequence

Array or sequence containing the data.

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the *n* parameter
in the call to `~numpy.fft.fft`.  The default is None, which sets *pad_to*
equal to the length of the input signal (i.e. no padding).

scale : {'default', 'linear', 'dB'}

The scaling of the values in the *spec*.  'linear' is no scaling.
'dB' returns the values in dB scale, i.e., the dB amplitude
(20 * log10). 'default' is 'linear'.

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

Returns ------- spectrum : 1-D array

The values for the magnitude spectrum before scaling (real valued).

freqs : 1-D array

The frequencies corresponding to the elements in *spectrum*.

line : `~matplotlib.lines.Line2D`

The line created by this function.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- psd

Plots the power spectral density.

angle_spectrum

Plots the angles of the corresponding frequencies.

phase_spectrum

Plots the phase (unwrapped angle) of the corresponding frequencies.

specgram

Can plot the magnitude spectrum of segments within the signal in a
colormap.

func Margins

func Margins(__llgo_va_list ...interface{}) *py.Object

Set or retrieve autoscaling margins.

The padding added to each limit of the Axes is the *margin* times the data interval. All input parameters must be floats greater than -0.5. Passing both positional and keyword arguments is invalid and will raise a TypeError. If no arguments (positional or otherwise) are provided, the current margins will remain unchanged and simply be returned.

Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling.

Parameters ---------- *margins : float, optional

If a single positional argument is provided, it specifies
both margins of the x-axis and y-axis limits. If two
positional arguments are provided, they will be interpreted
as *xmargin*, *ymargin*. If setting the margin on a single
axis is desired, use the keyword arguments described below.

x, y : float, optional

Specific margin values for the x-axis and y-axis,
respectively. These cannot be used with positional
arguments, but can be used individually to alter on e.g.,
only the y-axis.

tight : bool or None, default: True

The *tight* parameter is passed to `~.axes.Axes.autoscale_view`,
which is executed after a margin is changed; the default
here is *True*, on the assumption that when margins are
specified, no additional padding to match tick marks is
usually desired.  Setting *tight* to *None* preserves
the previous setting.

Returns ------- xmargin, ymargin : float

Notes ----- If a previously used Axes method such as :meth:`pcolor` has set :attr:`use_sticky_edges` to `True`, only the limits not set by the "sticky artists" will be modified. To force all of the margins to be set, set :attr:`use_sticky_edges` to `False` before calling :meth:`margins`.

func Matshow

func Matshow(A *py.Object, fignum *py.Object) *py.Object

Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

Parameters ---------- A : 2D array-like

The matrix to be displayed.

fignum : None or int

If *None*, create a new, appropriately sized figure window.

If 0, use the current Axes (creating one if there is none, without ever
adjusting the figure size).

Otherwise, create a new Axes on the figure with the given number
(creating it at the appropriate size if it does not exist, but not
adjusting the figure size otherwise).  Note that this will be drawn on
top of any preexisting Axes on the figure.

Returns ------- `~matplotlib.image.AxesImage`

Other Parameters ---------------- **kwargs : `~matplotlib.axes.Axes.imshow` arguments

func MinorticksOff

func MinorticksOff() *py.Object

Remove minor ticks from the Axes.

func MinorticksOn

func MinorticksOn() *py.Object

Display minor ticks on the Axes.

Displaying minor ticks may reduce performance; you may turn them off using `minorticks_off()` if drawing speed is a problem.

func NewFigureManager

func NewFigureManager(__llgo_va_list ...interface{}) *py.Object

Create a new figure manager instance.

func NipySpectral

func NipySpectral() *py.Object

Set the colormap to 'nipy_spectral'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Overload

func Overload(func_ *py.Object) *py.Object

Decorator for overloaded functions/methods.

In a stub file, place two or more stub definitions for the same
function in a row, each decorated with @overload.

For example::

    @overload
    def utf8(value: None) -> None: ...
    @overload
    def utf8(value: bytes) -> bytes: ...
    @overload
    def utf8(value: str) -> bytes: ...

In a non-stub file (i.e. a regular .py file), do the same but
follow it with an implementation.  The implementation should *not*
be decorated with @overload::

    @overload
    def utf8(value: None) -> None: ...
    @overload
    def utf8(value: bytes) -> bytes: ...
    @overload
    def utf8(value: str) -> bytes: ...
    def utf8(value):
        ...  # implementation goes here

The overloads for a function can be retrieved at runtime using the
get_overloads() function.

func Pause

func Pause(interval *py.Object) *py.Object

Run the GUI event loop for *interval* seconds.

If there is an active figure, it will be updated and displayed before the pause, and the GUI event loop (if any) will run during the pause.

This can be used for crude animation. For more complex animation use :mod:`matplotlib.animation`.

If there is no active figure, sleep for *interval* seconds instead.

See Also -------- matplotlib.animation : Proper animations show : Show all figures and optional block until all figures are closed.

func Pcolor

func Pcolor(__llgo_va_list ...interface{}) *py.Object

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature::

pcolor([X, Y,] C, **kwargs)

*X* and *Y* can be used to specify the corners of the quadrilaterals.

.. hint::

``pcolor()`` can be very slow for large arrays. In most
cases you should use the similar but much faster
`~.Axes.pcolormesh` instead. See
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>` for a discussion of the
differences.

Parameters ---------- C : 2D array-like

The color-mapped values.  Color-mapping is controlled by *cmap*,
*norm*, *vmin*, and *vmax*.

X, Y : array-like, optional

The coordinates of the corners of quadrilaterals of a pcolormesh::

    (X[i+1, j], Y[i+1, j])       (X[i+1, j+1], Y[i+1, j+1])
                          ●╶───╴●
                          │     │
                          ●╶───╴●
        (X[i, j], Y[i, j])       (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and
the row index corresponds to y. For details, see the
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.

If ``shading='flat'`` the dimensions of *X* and *Y* should be one
greater than those of *C*, and the quadrilateral is colored due
to the value at ``C[i, j]``.  If *X*, *Y* and *C* have equal
dimensions, a warning will be raised and the last row and column
of *C* will be ignored.

If ``shading='nearest'``, the dimensions of *X* and *Y* should be
the same as those of *C* (if not, a ValueError will be raised). The
color ``C[i, j]`` will be centered on ``(X[i, j], Y[i, j])``.

If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2D arrays, making a
rectangular grid.

shading : {'flat', 'nearest', 'auto'}, default: :rc:`pcolor.shading`

The fill style for the quadrilateral. Possible values:

- 'flat': A solid color is used for each quad. The color of the
  quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
  ``C[i, j]``. The dimensions of *X* and *Y* should be
  one greater than those of *C*; if they are the same as *C*,
  then a deprecation warning is raised, and the last row
  and column of *C* are dropped.
- 'nearest': Each grid point will have a color centered on it,
  extending halfway between the adjacent grid centers.  The
  dimensions of *X* and *Y* must be the same as *C*.
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
  larger than *C*.  Choose 'nearest' if dimensions are the same.

See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
for more description.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

edgecolors : {'none', None, 'face', color, color sequence}, optional

The color of the edges. Defaults to 'none'. Possible values:

- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
  :rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- A color or sequence of colors will set the edge color.

The singular form *edgecolor* works as an alias.

alpha : float, default: None

The alpha blending value of the face color, between 0 (transparent)
and 1 (opaque). Note: The edgecolor is currently not affected by
this.

snap : bool, default: False

Whether to snap the mesh to pixel boundaries.

Returns ------- `matplotlib.collections.PolyQuadMesh`

Other Parameters ---------------- antialiaseds : bool, default: False

The default *antialiaseds* is False if the default
*edgecolors*\ ="none" is used.  This eliminates artificial lines
at patch boundaries, and works regardless of the value of alpha.
If *edgecolors* is not "none", then the default *antialiaseds*
is taken from :rc:`patch.antialiased`.
Stroking the edges may be preferred if *alpha* is 1, but will
cause artifacts otherwise.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs

Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.PolyQuadMesh` constructor:

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

See Also -------- pcolormesh : for an explanation of the differences between

pcolor and pcolormesh.

imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a

faster alternative.

Notes ----- **Masked arrays**

*X*, *Y* and *C* may be masked arrays. If either “C[i, j]“, or one of the vertices surrounding “C[i, j]“ (*X* or *Y* at “[i, j], [i+1, j], [i, j+1], [i+1, j+1]“) is masked, nothing is plotted.

.. _axes-pcolor-grid-orientation:

**Grid orientation**

The grid orientation follows the standard matrix convention: An array *C* with shape (nrows, ncolumns) is plotted with the column number as *X* and the row number as *Y*.

func Pcolormesh

func Pcolormesh(__llgo_va_list ...interface{}) *py.Object

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature::

pcolormesh([X, Y,] C, **kwargs)

*X* and *Y* can be used to specify the corners of the quadrilaterals.

.. hint::

`~.Axes.pcolormesh` is similar to `~.Axes.pcolor`. It is much faster
and preferred in most cases. For a detailed discussion on the
differences see :ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.

Parameters ---------- C : array-like

The mesh data. Supported array shapes are:

- (M, N) or M*N: a mesh with scalar data. The values are mapped to
  colors using normalization and a colormap. See parameters *norm*,
  *cmap*, *vmin*, *vmax*.
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
  i.e. including transparency.

The first two dimensions (M, N) define the rows and columns of
the mesh data.

X, Y : array-like, optional

The coordinates of the corners of quadrilaterals of a pcolormesh::

    (X[i+1, j], Y[i+1, j])       (X[i+1, j+1], Y[i+1, j+1])
                          ●╶───╴●
                          │     │
                          ●╶───╴●
        (X[i, j], Y[i, j])       (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and
the row index corresponds to y. For details, see the
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.

If ``shading='flat'`` the dimensions of *X* and *Y* should be one
greater than those of *C*, and the quadrilateral is colored due
to the value at ``C[i, j]``.  If *X*, *Y* and *C* have equal
dimensions, a warning will be raised and the last row and column
of *C* will be ignored.

If ``shading='nearest'`` or ``'gouraud'``, the dimensions of *X*
and *Y* should be the same as those of *C* (if not, a ValueError
will be raised).  For ``'nearest'`` the color ``C[i, j]`` is
centered on ``(X[i, j], Y[i, j])``.  For ``'gouraud'``, a smooth
interpolation is caried out between the quadrilateral corners.

If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2D arrays, making a
rectangular grid.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

edgecolors : {'none', None, 'face', color, color sequence}, optional

The color of the edges. Defaults to 'none'. Possible values:

- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
  :rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- A color or sequence of colors will set the edge color.

The singular form *edgecolor* works as an alias.

alpha : float, default: None

The alpha blending value, between 0 (transparent) and 1 (opaque).

shading : {'flat', 'nearest', 'gouraud', 'auto'}, optional

The fill style for the quadrilateral; defaults to
:rc:`pcolor.shading`. Possible values:

- 'flat': A solid color is used for each quad. The color of the
  quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
  ``C[i, j]``. The dimensions of *X* and *Y* should be
  one greater than those of *C*; if they are the same as *C*,
  then a deprecation warning is raised, and the last row
  and column of *C* are dropped.
- 'nearest': Each grid point will have a color centered on it,
  extending halfway between the adjacent grid centers.  The
  dimensions of *X* and *Y* must be the same as *C*.
- 'gouraud': Each quad will be Gouraud shaded: The color of the
  corners (i', j') are given by ``C[i', j']``. The color values of
  the area in between is interpolated from the corner values.
  The dimensions of *X* and *Y* must be the same as *C*. When
  Gouraud shading is used, *edgecolors* is ignored.
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
  larger than *C*.  Choose 'nearest' if dimensions are the same.

See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
for more description.

snap : bool, default: False

Whether to snap the mesh to pixel boundaries.

rasterized : bool, optional

Rasterize the pcolormesh when drawing vector graphics.  This can
speed up rendering and produce smaller files for large data sets.
See also :doc:`/gallery/misc/rasterization_demo`.

Returns ------- `matplotlib.collections.QuadMesh`

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs

Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.QuadMesh` constructor:

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
visible: bool
zorder: float

See Also -------- pcolor : An alternative implementation with slightly different

features. For a detailed discussion on the differences see
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.

imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a

faster alternative.

Notes ----- **Masked arrays**

*C* may be a masked array. If “C[i, j]“ is masked, the corresponding quadrilateral will be transparent. Masking of *X* and *Y* is not supported. Use `~.Axes.pcolor` if you need this functionality.

.. _axes-pcolormesh-grid-orientation:

**Grid orientation**

The grid orientation follows the standard matrix convention: An array *C* with shape (nrows, ncolumns) is plotted with the column number as *X* and the row number as *Y*.

.. _differences-pcolor-pcolormesh:

**Differences between pcolor() and pcolormesh()**

Both methods are used to create a pseudocolor plot of a 2D array using quadrilaterals.

The main difference lies in the created object and internal data handling: While `~.Axes.pcolor` returns a `.PolyQuadMesh`, `~.Axes.pcolormesh` returns a `.QuadMesh`. The latter is more specialized for the given purpose and thus is faster. It should almost always be preferred.

There is also a slight difference in the handling of masked arrays. Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X* and *Y*. The reason lies in the internal handling of the masked values. `~.Axes.pcolor` leaves out the respective polygons from the PolyQuadMesh. `~.Axes.pcolormesh` sets the facecolor of the masked elements to transparent. You can see the difference when using edgecolors. While all edges are drawn irrespective of masking in a QuadMesh, the edge between two adjacent masked quadrilaterals in `~.Axes.pcolor` is not drawn as the corresponding polygons do not exist in the PolyQuadMesh. Because PolyQuadMesh draws each individual polygon, it also supports applying hatches and linestyles to the collection.

Another difference is the support of Gouraud shading in `~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.

func PhaseSpectrum

func PhaseSpectrum(x *py.Object, Fs *py.Object, Fc *py.Object, window *py.Object, padTo *py.Object, sides *py.Object) *py.Object

Plot the phase spectrum.

Compute the phase spectrum (unwrapped angle spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal.

Parameters ---------- x : 1-D array or sequence

Array or sequence containing the data

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the *n* parameter
in the call to `~numpy.fft.fft`.  The default is None, which sets *pad_to*
equal to the length of the input signal (i.e. no padding).

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

Returns ------- spectrum : 1-D array

The values for the phase spectrum in radians (real valued).

freqs : 1-D array

The frequencies corresponding to the elements in *spectrum*.

line : `~matplotlib.lines.Line2D`

The line created by this function.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

angle_spectrum

Plots the wrapped version of this function.

specgram

Can plot the phase spectrum of segments within the signal in a
colormap.

func Pie

func Pie(x *py.Object, explode *py.Object, labels *py.Object, colors *py.Object, autopct *py.Object, pctdistance *py.Object, shadow *py.Object, labeldistance *py.Object, startangle *py.Object, radius *py.Object, counterclock *py.Object, wedgeprops *py.Object, textprops *py.Object, center *py.Object, frame *py.Object, rotatelabels *py.Object) *py.Object

Plot a pie chart.

Make a pie chart of array *x*. The fractional area of each wedge is given by “x/sum(x)“.

The wedges are plotted counterclockwise, by default starting from the x-axis.

Parameters ---------- x : 1D array-like

The wedge sizes.

explode : array-like, default: None

If not *None*, is a ``len(x)`` array which specifies the fraction
of the radius with which to offset each wedge.

labels : list, default: None

A sequence of strings providing the labels for each wedge

colors : color or array-like of color, default: None

A sequence of colors through which the pie chart will cycle.  If
*None*, will use the colors in the currently active cycle.

hatch : str or list, default: None

Hatching pattern applied to all pie wedges or sequence of patterns
through which the chart will cycle. For a list of valid patterns,
see :doc:`/gallery/shapes_and_collections/hatch_style_reference`.

.. versionadded:: 3.7

autopct : None or str or callable, default: None

If not *None*, *autopct* is a string or function used to label the
wedges with their numeric value. The label will be placed inside
the wedge. If *autopct* is a format string, the label will be
``fmt % pct``. If *autopct* is a function, then it will be called.

pctdistance : float, default: 0.6

The relative distance along the radius at which the text
generated by *autopct* is drawn. To draw the text outside the pie,
set *pctdistance* > 1. This parameter is ignored if *autopct* is
``None``.

labeldistance : float or None, default: 1.1

The relative distance along the radius at which the labels are
drawn. To draw the labels inside the pie, set  *labeldistance* < 1.
If set to ``None``, labels are not drawn but are still stored for
use in `.legend`.

shadow : bool or dict, default: False

If bool, whether to draw a shadow beneath the pie. If dict, draw a shadow
passing the properties in the dict to `.Shadow`.

.. versionadded:: 3.8
    *shadow* can be a dict.

startangle : float, default: 0 degrees

The angle by which the start of the pie is rotated,
counterclockwise from the x-axis.

radius : float, default: 1

The radius of the pie.

counterclock : bool, default: True

Specify fractions direction, clockwise or counterclockwise.

wedgeprops : dict, default: None

Dict of arguments passed to each `.patches.Wedge` of the pie.
For example, ``wedgeprops = {'linewidth': 3}`` sets the width of
the wedge border lines equal to 3. By default, ``clip_on=False``.
When there is a conflict between these properties and other
keywords, properties passed to *wedgeprops* take precedence.

textprops : dict, default: None

Dict of arguments to pass to the text objects.

center : (float, float), default: (0, 0)

The coordinates of the center of the chart.

frame : bool, default: False

Plot Axes frame with the chart if true.

rotatelabels : bool, default: False

Rotate each label to the angle of the corresponding slice if true.

normalize : bool, default: True

When *True*, always make a full pie by normalizing x so that
``sum(x) == 1``. *False* makes a partial pie if ``sum(x) <= 1``
and raises a `ValueError` for ``sum(x) > 1``.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *explode*, *labels*, *colors*

Returns ------- patches : list

A sequence of `matplotlib.patches.Wedge` instances

texts : list

A list of the label `.Text` instances.

autotexts : list

A list of `.Text` instances for the numeric labels. This will only
be returned if the parameter *autopct* is not *None*.

Notes ----- The pie chart will probably look best if the figure and Axes are square, or the Axes aspect is equal. This method sets the aspect ratio of the axis to "equal". The Axes aspect ratio can be controlled with `.Axes.set_aspect`.

func Pink

func Pink() *py.Object

Set the colormap to 'pink'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Plasma

func Plasma() *py.Object

Set the colormap to 'plasma'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Plot

func Plot(__llgo_va_list ...interface{}) *py.Object

Plot y versus x as lines and/or markers.

Call signatures::

plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

The coordinates of the points or line nodes are given by *x*, *y*.

The optional parameter *fmt* is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the *Notes* section below.

>>> plot(x, y) # plot x and y using default line style and color >>> plot(x, y, 'bo') # plot x and y using blue circle markers >>> plot(y) # plot y using x as index array 0..N-1 >>> plot(y, 'r+') # ditto, but with red plusses

You can use `.Line2D` properties as keyword arguments for more control on the appearance. Line properties and *fmt* can be mixed. The following two calls yield identical results:

>>> plot(x, y, 'go--', linewidth=2, markersize=12) >>> plot(x, y, color='green', marker='o', linestyle='dashed', ... linewidth=2, markersize=12)

When conflicting with *fmt*, keyword arguments take precedence.

**Plotting labelled data**

There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index “obj['y']“). Instead of giving the data in *x* and *y*, you can provide the object in the *data* parameter and just give the labels for *x* and *y*::

>>> plot('xlabel', 'ylabel', data=obj)

All indexable objects are supported. This could e.g. be a `dict`, a `pandas.DataFrame` or a structured numpy array.

**Plotting multiple sets of data**

There are various ways to plot multiple sets of data.

  • The most straight forward way is just to call `plot` multiple times. Example:

    >>> plot(x1, y1, 'bo') >>> plot(x2, y2, 'go')

  • If *x* and/or *y* are 2D arrays a separate data set will be drawn for every column. If both *x* and *y* are 2D, they must have the same shape. If only one of them is 2D with shape (N, m) the other must have length N and will be used for every data set m.

    Example:

    >>> x = [1, 2, 3] >>> y = np.array([[1, 2], [3, 4], [5, 6]]) >>> plot(x, y)

    is equivalent to:

    >>> for col in range(y.shape[1]): ... plot(x, y[:, col])

  • The third way is to specify multiple sets of *[x]*, *y*, *fmt* groups::

    >>> plot(x1, y1, 'g^', x2, y2, 'g-')

    In this case, any additional keyword argument applies to all datasets. Also, this syntax cannot be combined with the *data* parameter.

By default, each line is assigned a different style specified by a 'style cycle'. The *fmt* and line property parameters are only necessary if you want explicit deviations from these defaults. Alternatively, you can also change the style cycle using :rc:`axes.prop_cycle`.

Parameters ---------- x, y : array-like or scalar

The horizontal / vertical coordinates of the data points.
*x* values are optional and default to ``range(len(y))``.

Commonly, these parameters are 1D arrays.

They can also be scalars, or two-dimensional (in that case, the
columns represent separate data sets).

These arguments cannot be passed as keywords.

fmt : str, optional

A format string, e.g. 'ro' for red circles. See the *Notes*
section for a full description of the format strings.

Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.

This argument cannot be passed as keyword.

data : indexable object, optional

An object with labelled data. If given, provide the label names to
plot in *x* and *y*.

.. note::
    Technically there's a slight ambiguity in calls where the
    second label is a valid *fmt*. ``plot('n', 'o', data=obj)``
    could be ``plt(x, y)`` or ``plt(y, fmt)``. In such cases,
    the former interpretation is chosen, but a warning is issued.
    You may suppress the warning by adding an empty format string
    ``plot('n', 'o', '', data=obj)``.

Returns ------- list of `.Line2D`

A list of lines representing the plotted data.

Other Parameters ---------------- scalex, scaley : bool, default: True

These parameters determine if the view limits are adapted to the
data limits. The values are passed on to
`~.axes.Axes.autoscale_view`.

**kwargs : `~matplotlib.lines.Line2D` properties, optional

*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::

>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

If you specify multiple lines with one plot call, the kwargs apply
to all those lines. In case the label object is iterable, each
element is used as labels for each set of data.

Here is a list of available `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- scatter : XY scatter plot with markers of varying size and/or color (

sometimes also called bubble chart).

Notes ----- **Format Strings**

A format string consists of a part for color, marker and line::

fmt = '[marker][line][color]'

Each of them is optional. If not provided, the value from the style cycle is used. Exception: If “line“ is given, but no “marker“, the data will be a line without markers.

Other combinations such as “[color][marker][line]“ are also supported, but note that their parsing may be ambiguous.

**Markers**

============= =============================== character description ============= =============================== “'.'“ point marker “','“ pixel marker “'o'“ circle marker “'v'“ triangle_down marker “'^'“ triangle_up marker “'<'“ triangle_left marker “'>'“ triangle_right marker “'1'“ tri_down marker “'2'“ tri_up marker “'3'“ tri_left marker “'4'“ tri_right marker “'8'“ octagon marker “'s'“ square marker “'p'“ pentagon marker “'P'“ plus (filled) marker “'*'“ star marker “'h'“ hexagon1 marker “'H'“ hexagon2 marker “'+'“ plus marker “'x'“ x marker “'X'“ x (filled) marker “'D'“ diamond marker “'d'“ thin_diamond marker “'|'“ vline marker “'_'“ hline marker ============= ===============================

**Line Styles**

============= =============================== character description ============= =============================== “'-'“ solid line style “'--'“ dashed line style “'-.'“ dash-dot line style “':'“ dotted line style ============= ===============================

Example format strings::

'b'    # blue markers with default shape
'or'   # red circles
'-g'   # green solid line
'--'   # dashed line with default color
'^k:'  # black triangle_up markers connected by a dotted line

**Colors**

The supported color abbreviations are the single letter codes

============= =============================== character color ============= =============================== “'b'“ blue “'g'“ green “'r'“ red “'c'“ cyan “'m'“ magenta “'y'“ yellow “'k'“ black “'w'“ white ============= ===============================

and the “'CN'“ colors that index into the default property cycle.

If the color is the only part of the format string, you can additionally use any `matplotlib.colors` spec, e.g. full names (“'green'“) or hex strings (“'#008000'“).

func PlotDate

func PlotDate(x *py.Object, y *py.Object, fmt *py.Object, tz *py.Object, xdate *py.Object, ydate *py.Object) *py.Object

[*Discouraged*] Plot coercing the axis to treat floats as dates.

.. admonition:: Discouraged

This method exists for historic reasons and will be deprecated in
the future.

- ``datetime``-like data should directly be plotted using
  `~.Axes.plot`.
-  If you need to plot plain numeric data as :ref:`date-format` or
   need to set a timezone, call ``ax.xaxis.axis_date`` /
   ``ax.yaxis.axis_date`` before `~.Axes.plot`. See
   `.Axis.axis_date`.

Similar to `.plot`, this plots *y* vs. *x* as lines or markers. However, the axis labels are formatted as dates depending on *xdate* and *ydate*. Note that `.plot` will work with `datetime` and `numpy.datetime64` objects without resorting to this method.

Parameters ---------- x, y : array-like

The coordinates of the data points. If *xdate* or *ydate* is
*True*, the respective values *x* or *y* are interpreted as
:ref:`Matplotlib dates <date-format>`.

fmt : str, optional

The plot format string. For details, see the corresponding
parameter in `.plot`.

tz : timezone string or `datetime.tzinfo`, default: :rc:`timezone`

The time zone to use in labeling dates.

xdate : bool, default: True

If *True*, the *x*-axis will be interpreted as Matplotlib dates.

ydate : bool, default: False

If *True*, the *y*-axis will be interpreted as Matplotlib dates.

Returns ------- list of `.Line2D`

Objects representing the plotted data.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- matplotlib.dates : Helper functions on dates. matplotlib.dates.date2num : Convert dates to num. matplotlib.dates.num2date : Convert num to dates. matplotlib.dates.drange : Create an equally spaced sequence of dates.

Notes ----- If you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to `.plot_date`. `.plot_date` will set the default tick locator to `.AutoDateLocator` (if the tick locator is not already set to a `.DateLocator` instance) and the default tick formatter to `.AutoDateFormatter` (if the tick formatter is not already set to a `.DateFormatter` instance).

func Polar

func Polar(__llgo_va_list ...interface{}) *py.Object

Make a polar plot.

call signature::

polar(theta, r, **kwargs)

Multiple *theta*, *r* arguments are supported, with format strings, as in `plot`.

func Prism

func Prism() *py.Object

Set the colormap to 'prism'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Psd

func Psd(x *py.Object, NFFT *py.Object, Fs *py.Object, Fc *py.Object, detrend *py.Object, window *py.Object, noverlap *py.Object, padTo *py.Object, sides *py.Object, scaleByFreq *py.Object, returnLine *py.Object) *py.Object

Plot the power spectral density.

The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`, with a scaling to correct for power loss due to windowing.

If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

Parameters ---------- x : 1-D array or sequence

Array or sequence containing the data

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  This can be different from *NFFT*, which specifies the number
of data points used.  While not increasing the actual resolution of the
spectrum (the minimum distance between resolvable peaks), this can give
more points in the plot, allowing for more detail. This corresponds to
the *n* parameter in the call to `~numpy.fft.fft`. The default is None,
which sets *pad_to* equal to *NFFT*

NFFT : int, default: 256

The number of data points used in each block for the FFT.  A power 2 is
most efficient.  This should *NOT* be used to get zero padding, or the
scaling of the result will be incorrect; use *pad_to* for this instead.

detrend : {'none', 'mean', 'linear'} or callable, default: 'none'

The function applied to each segment before fft-ing, designed to remove
the mean or linear trend.  Unlike in MATLAB, where the *detrend* parameter
is a vector, in Matplotlib it is a function.  The :mod:`~matplotlib.mlab`
module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
but you can use a custom function as well.  You can also use a string to
choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
`.detrend_mean`. 'linear' calls `.detrend_linear`.

scale_by_freq : bool, default: True

Whether the resulting density values should be scaled by the scaling
frequency, which gives density in units of 1/Hz.  This allows for
integration over the returned frequency values.  The default is True for
MATLAB compatibility.

noverlap : int, default: 0 (no overlap)

The number of points of overlap between segments.

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

return_line : bool, default: False

Whether to include the line object plotted in the returned values.

Returns ------- Pxx : 1-D array

The values for the power spectrum :math:`P_{xx}` before scaling
(real valued).

freqs : 1-D array

The frequencies corresponding to the elements in *Pxx*.

line : `~matplotlib.lines.Line2D`

The line created by this function.
Only returned if *return_line* is True.

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Keyword arguments control the `.Line2D` properties:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

See Also -------- specgram

Differs in the default overlap; in not returning the mean of the
segment periodograms; in returning the times of the segments; and
in plotting a colormap instead of a line.

magnitude_spectrum

Plots the magnitude spectrum.

csd

Plots the spectral density between two signals.

Notes ----- For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned.

References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986)

func Quiver

func Quiver(__llgo_va_list ...interface{}) *py.Object

Plot a 2D field of arrows.

Call signature::

quiver([X, Y], U, V, [C], **kwargs)

*X*, *Y* define the arrow locations, *U*, *V* define the arrow directions, and *C* optionally sets the color.

**Arrow length**

The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior see the *scale* and *scale_units* parameters.

**Arrow shape**

The arrow shape is determined by *width*, *headwidth*, *headlength* and *headaxislength*. See the notes below.

**Arrow styling**

Each arrow is internally represented by a filled polygon with a default edge linewidth of 0. As a result, an arrow is rather a filled area, not a line with a head, and `.PolyCollection` properties like *linewidth*, *edgecolor*, *facecolor*, etc. act accordingly.

Parameters ---------- X, Y : 1D or 2D array-like, optional

The x and y coordinates of the arrow locations.

If not given, they will be generated as a uniform integer meshgrid based
on the dimensions of *U* and *V*.

If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D
using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``
must match the column and row dimensions of *U* and *V*.

U, V : 1D or 2D array-like

The x and y direction components of the arrow vectors. The interpretation
of these components (in data or in screen space) depends on *angles*.

*U* and *V* must have the same number of elements, matching the number of
arrow locations in  *X*, *Y*. *U* and *V* may be masked. Locations masked
in any of *U*, *V*, and *C* will not be drawn.

C : 1D or 2D array-like, optional

Numeric data that defines the arrow colors by colormapping via *norm* and
*cmap*.

This does not support explicit colors. If you want to set colors directly,
use *color* instead.  The size of *C* must match the number of arrow
locations.

angles : {'uv', 'xy'} or array-like, default: 'uv'

Method for determining the angle of the arrows.

- 'uv': Arrow direction in screen coordinates. Use this if the arrows
  symbolize a quantity that is not based on *X*, *Y* data coordinates.

  If *U* == *V* the orientation of the arrow on the plot is 45 degrees
  counter-clockwise from the  horizontal axis (positive to the right).

- 'xy': Arrow direction in data coordinates, i.e. the arrows point from
  (x, y) to (x+u, y+v). Use this e.g. for plotting a gradient field.

- Arbitrary angles may be specified explicitly as an array of values
  in degrees, counter-clockwise from the horizontal axis.

  In this case *U*, *V* is only used to determine the length of the
  arrows.

Note: inverting a data axis will correspondingly invert the
arrows only with ``angles='xy'``.

pivot : {'tail', 'mid', 'middle', 'tip'}, default: 'tail'

The part of the arrow that is anchored to the *X*, *Y* grid. The arrow
rotates about this point.

'mid' is a synonym for 'middle'.

scale : float, optional

Scales the length of the arrow inversely.

Number of data units per arrow length unit, e.g., m/s per plot width; a
smaller scale parameter makes the arrow longer. Default is *None*.

If *None*, a simple autoscaling algorithm is used, based on the average
vector length and the number of vectors. The arrow length unit is given by
the *scale_units* parameter.

scale_units : {'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional

If the *scale* kwarg is *None*, the arrow length unit. Default is *None*.

e.g. *scale_units* is 'inches', *scale* is 2.0, and ``(u, v) = (1, 0)``,
then the vector will be 0.5 inches long.

If *scale_units* is 'width' or 'height', then the vector will be half the
width/height of the axes.

If *scale_units* is 'x' then the vector will be 0.5 x-axis
units. To plot vectors in the x-y plane, with u and v having
the same units as x and y, use
``angles='xy', scale_units='xy', scale=1``.

units : {'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'

Affects the arrow size (except for the length). In particular, the shaft
*width* is measured in multiples of this unit.

Supported values are:

- 'width', 'height': The width or height of the Axes.
- 'dots', 'inches': Pixels or inches based on the figure dpi.
- 'x', 'y', 'xy': *X*, *Y* or :math:`\sqrt{X^2 + Y^2}` in data units.

The following table summarizes how these values affect the visible arrow
size under zooming and figure size changes:

=================  =================   ==================
units              zoom                figure size change
=================  =================   ==================
'x', 'y', 'xy'     arrow size scales   —
'width', 'height'  —                   arrow size scales
'dots', 'inches'   —                   —
=================  =================   ==================

width : float, optional

Shaft width in arrow units. All head parameters are relative to *width*.

The default depends on choice of *units* above, and number of vectors;
a typical starting value is about 0.005 times the width of the plot.

headwidth : float, default: 3

Head width as multiple of shaft *width*. See the notes below.

headlength : float, default: 5

Head length as multiple of shaft *width*. See the notes below.

headaxislength : float, default: 4.5

Head length at shaft intersection as multiple of shaft *width*.
See the notes below.

minshaft : float, default: 1

Length below which arrow scales, in units of head length. Do not
set this to less than 1, or small arrows will look terrible!

minlength : float, default: 1

Minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.

color : color or color sequence, optional

Explicit color(s) for the arrows. If *C* has been set, *color* has no
effect.

This is a synonym for the `.PolyCollection` *facecolor* parameter.

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs : `~matplotlib.collections.PolyCollection` properties, optional

All other keyword arguments are passed on to `.PolyCollection`:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: color or list of RGBA tuples
edgecolor or ec or edgecolors: color or list of colors or 'face'
facecolor or facecolors or fc: color or list of colors
figure: `~matplotlib.figure.Figure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: list of array-like
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sizes: `numpy.ndarray` or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
verts: list of array-like
verts_and_codes: unknown
visible: bool
zorder: float

Returns ------- `~matplotlib.quiver.Quiver`

See Also -------- .Axes.quiverkey : Add a key to a quiver plot.

Notes -----

**Arrow shape**

The arrow is drawn as a polygon using the nodes as shown below. The values *headwidth*, *headlength*, and *headaxislength* are in units of *width*.

.. image:: /_static/quiver_sizes.svg

:width: 500px

The defaults give a slightly swept-back arrow. Here are some guidelines how to get other head shapes:

  • To make the head a triangle, make *headaxislength* the same as *headlength*.
  • To make the arrow more pointed, reduce *headwidth* or increase *headlength* and *headaxislength*.
  • To make the head smaller relative to the shaft, scale down all the head parameters proportionally.
  • To remove the head completely, set all *head* parameters to 0.
  • To get a diamond-shaped head, make *headaxislength* larger than *headlength*.
  • Warning: For *headaxislength* < (*headlength* / *headwidth*), the "headaxis" nodes (i.e. the ones connecting the head with the shaft) will protrude out of the head in forward direction so that the arrow head looks broken.

func Quiverkey

func Quiverkey(Q *py.Object, X *py.Object, Y *py.Object, U *py.Object, label *py.Object) *py.Object

Add a key to a quiver plot.

The positioning of the key depends on *X*, *Y*, *coordinates*, and *labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y* positions the head, and if *labelpos* is 'W', *X*, *Y* positions the tail; in either of these two cases, *X*, *Y* is somewhere in the middle of the arrow+label key object.

Parameters ---------- Q : `~matplotlib.quiver.Quiver`

A `.Quiver` object as returned by a call to `~.Axes.quiver()`.

X, Y : float

The location of the key.

U : float

The length of the key.

label : str

The key label (e.g., length and units of the key).

angle : float, default: 0

The angle of the key arrow, in degrees anti-clockwise from the
horizontal axis.

coordinates : {'axes', 'figure', 'data', 'inches'}, default: 'axes'

Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are
normalized coordinate systems with (0, 0) in the lower left and
(1, 1) in the upper right; 'data' are the axes data coordinates
(used for the locations of the vectors in the quiver plot itself);
'inches' is position in the figure in inches, with (0, 0) at the
lower left corner.

color : color

Overrides face and edge colors from *Q*.

labelpos : {'N', 'S', 'E', 'W'}

Position the label above, below, to the right, to the left of the
arrow, respectively.

labelsep : float, default: 0.1

Distance in inches between the arrow and the label.

labelcolor : color, default: :rc:`text.color`

Label color.

fontproperties : dict, optional

A dictionary with keyword arguments accepted by the
`~matplotlib.font_manager.FontProperties` initializer:
*family*, *style*, *variant*, *size*, *weight*.

**kwargs

Any additional keyword arguments are used to override vector
properties taken from *Q*.

func Rc

func Rc(group *py.Object) *py.Object

Set the current `.rcParams`. *group* is the grouping for the rc, e.g., for “lines.linewidth“ the group is “lines“, for “axes.facecolor“, the group is “axes“, and so on. Group may also be a list or tuple of group names, e.g., (*xtick*, *ytick*). *kwargs* is a dictionary attribute name/value pairs, e.g.,::

rc('lines', linewidth=2, color='r')

sets the current `.rcParams` and is equivalent to::

rcParams['lines.linewidth'] = 2
rcParams['lines.color'] = 'r'

The following aliases are available to save typing for interactive users:

===== ================= Alias Property ===== ================= 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' ===== =================

Thus you could abbreviate the above call as::

rc('lines', lw=2, c='r')

Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g., you can customize the font rc as follows::

font = {'family' : 'monospace',
        'weight' : 'bold',
        'size'   : 'larger'}
rc('font', **font)  # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use “matplotlib.style.use('default')“ or :func:`~matplotlib.rcdefaults` to restore the default `.rcParams` after changes.

Notes ----- Similar functionality is available by using the normal dict interface, i.e. “rcParams.update({"lines.linewidth": 2, ...})“ (but “rcParams.update“ does not support abbreviations or grouping).

func RcContext

func RcContext(rc *py.Object, fname *py.Object) *py.Object

Return a context manager for temporarily changing rcParams.

The :rc:`backend` will not be reset by the context manager.

rcParams changed both through the context manager invocation and in the body of the context will be reset on context exit.

Parameters ---------- rc : dict

The rcParams to temporarily set.

fname : str or path-like

A file with Matplotlib rc settings. If both *fname* and *rc* are given,
settings from *rc* take precedence.

See Also -------- :ref:`customizing-with-matplotlibrc-files`

Examples -------- Passing explicit values via a dict::

with mpl.rc_context({'interactive': False}):
    fig, ax = plt.subplots()
    ax.plot(range(3), range(3))
    fig.savefig('example.png')
    plt.close(fig)

Loading settings from a file::

with mpl.rc_context(fname='print.rc'):
    plt.plot(x, y)  # uses 'print.rc'

Setting in the context body::

with mpl.rc_context():
    # will be reset
    mpl.rcParams['lines.linewidth'] = 5
    plt.plot(x, y)

func Rcdefaults

func Rcdefaults() *py.Object

Restore the `.rcParams` from Matplotlib's internal default style.

Style-blacklisted `.rcParams` (defined in “matplotlib.style.core.STYLE_BLACKLIST“) are not updated.

See Also -------- matplotlib.rc_file_defaults

Restore the `.rcParams` from the rc file originally loaded by
Matplotlib.

matplotlib.style.use

Use a specific style file.  Call ``style.use('default')`` to restore
the default style.

func RegisterCmap

func RegisterCmap(name *py.Object, cmap *py.Object) *py.Object

[*Deprecated*] Add a colormap to the set recognized by :func:`get_cmap`.

Register a new colormap to be accessed by name ::

LinearSegmentedColormap('swirly', data, lut)
register_cmap(cmap=swirly_cmap)

Parameters ---------- name : str, optional

The name that can be used in :func:`get_cmap` or :rc:`image.cmap`

If absent, the name will be the :attr:`~matplotlib.colors.Colormap.name`
attribute of the *cmap*.

cmap : matplotlib.colors.Colormap

Despite being the second argument and having a default value, this
is a required argument.

override_builtin : bool

Allow built-in colormaps to be overridden by a user-supplied
colormap.

Please do not use this unless you are sure you need it.

Notes ----- .. deprecated:: 3.7

Use ``matplotlib.colormaps.register(name)`` instead.

func Rgrids

func Rgrids(radii *py.Object, labels *py.Object, angle *py.Object, fmt *py.Object) *py.Object

Get or set the radial gridlines on the current polar plot.

Call signatures::

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs)

When called with no arguments, `.rgrids` simply returns the tuple (*lines*, *labels*). When called with arguments, the labels will appear at the specified radial distances and angle.

Parameters ---------- radii : tuple with floats

The radii for the radial gridlines

labels : tuple with strings or None

The labels to use at each radial gridline. The
`matplotlib.ticker.ScalarFormatter` will be used if None.

angle : float

The angular position of the radius labels in degrees.

fmt : str or None

Format string used in `matplotlib.ticker.FormatStrFormatter`.
For example '%f'.

Returns ------- lines : list of `.lines.Line2D`

The radial gridlines.

labels : list of `.text.Text`

The tick labels.

Other Parameters ---------------- **kwargs

*kwargs* are optional `.Text` properties for the labels.

See Also -------- .pyplot.thetagrids .projections.polar.PolarAxes.set_rgrids .Axis.get_gridlines .Axis.get_ticklabels

Examples -------- ::

# set the locations of the radial gridlines
lines, labels = rgrids( (0.25, 0.5, 1.0) )

# set the locations and labels of the radial gridlines
lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ))

func Savefig

func Savefig(__llgo_va_list ...interface{}) *py.Object

Save the current figure.

Call signature::

savefig(fname, *, transparent=None, dpi='figure', format=None,
        metadata=None, bbox_inches=None, pad_inches=0.1,
        facecolor='auto', edgecolor='auto', backend=None,
        **kwargs
       )

The available output formats depend on the backend being used.

Parameters ---------- fname : str or path-like or binary file-like

A path, or a Python file-like object, or
possibly some backend-dependent object such as
`matplotlib.backends.backend_pdf.PdfPages`.

If *format* is set, it determines the output format, and the file
is saved as *fname*.  Note that *fname* is used verbatim, and there
is no attempt to make the extension, if any, of *fname* match
*format*, and no extension is appended.

If *format* is not set, then the format is inferred from the
extension of *fname*, if there is one.  If *format* is not
set and *fname* has no extension, then the file is saved with
:rc:`savefig.format` and the appropriate extension is appended to
*fname*.

Other Parameters ---------------- transparent : bool, default: :rc:`savefig.transparent`

If *True*, the Axes patches will all be transparent; the
Figure patch will also be transparent unless *facecolor*
and/or *edgecolor* are specified via kwargs.

If *False* has no effect and the color of the Axes and
Figure patches are unchanged (unless the Figure patch
is specified via the *facecolor* and/or *edgecolor* keyword
arguments in which case those colors are used).

The transparency of these patches will be restored to their
original values upon exit of this function.

This is useful, for example, for displaying
a plot on top of a colored background on a web page.

dpi : float or 'figure', default: :rc:`savefig.dpi`

The resolution in dots per inch.  If 'figure', use the figure's
dpi value.

format : str

The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when
this is unset is documented under *fname*.

metadata : dict, optional

Key/value pairs to store in the image metadata. The supported keys
and defaults depend on the image format and backend:

- 'png' with Agg backend: See the parameter ``metadata`` of
  `~.FigureCanvasAgg.print_png`.
- 'pdf' with pdf backend: See the parameter ``metadata`` of
  `~.backend_pdf.PdfPages`.
- 'svg' with svg backend: See the parameter ``metadata`` of
  `~.FigureCanvasSVG.print_svg`.
- 'eps' and 'ps' with PS backend: Only 'Creator' is supported.

Not supported for 'pgf', 'raw', and 'rgba' as those formats do not support
embedding metadata.
Does not currently support 'jpg', 'tiff', or 'webp', but may include
embedding EXIF metadata in the future.

bbox_inches : str or `.Bbox`, default: :rc:`savefig.bbox`

Bounding box in inches: only the given portion of the figure is
saved.  If 'tight', try to figure out the tight bbox of the figure.

pad_inches : float or 'layout', default: :rc:`savefig.pad_inches`

Amount of padding in inches around the figure when bbox_inches is
'tight'. If 'layout' use the padding from the constrained or
compressed layout engine; ignored if one of those engines is not in
use.

facecolor : color or 'auto', default: :rc:`savefig.facecolor`

The facecolor of the figure.  If 'auto', use the current figure
facecolor.

edgecolor : color or 'auto', default: :rc:`savefig.edgecolor`

The edgecolor of the figure.  If 'auto', use the current figure
edgecolor.

backend : str, optional

Use a non-default backend to render the file, e.g. to render a
png file with the "cairo" backend rather than the default "agg",
or a pdf file with the "pgf" backend rather than the default
"pdf".  Note that the default backend is normally sufficient.  See
:ref:`the-builtin-backends` for a list of valid backends for each
file format.  Custom backends can be referenced as "module://...".

orientation : {'landscape', 'portrait'}

Currently only supported by the postscript backend.

papertype : str

One of 'letter', 'legal', 'executive', 'ledger', 'a0' through
'a10', 'b0' through 'b10'. Only supported for postscript
output.

bbox_extra_artists : list of `~matplotlib.artist.Artist`, optional

A list of extra artists that will be considered when the
tight bbox is calculated.

pil_kwargs : dict, optional

Additional keyword arguments that are passed to
`PIL.Image.Image.save` when saving the figure.

func Sca

func Sca(ax *py.Object) *py.Object

Set the current Axes to *ax* and the current Figure to the parent of *ax*.

func Scatter

func Scatter(x *py.Object, y *py.Object, s *py.Object, c *py.Object, marker *py.Object, cmap *py.Object, norm *py.Object, vmin *py.Object, vmax *py.Object, alpha *py.Object, linewidths *py.Object) *py.Object

A scatter plot of *y* vs. *x* with varying marker size and/or color.

Parameters ---------- x, y : float or array-like, shape (n, )

The data positions.

s : float or array-like, shape (n, ), optional

The marker size in points**2 (typographic points are 1/72 in.).
Default is ``rcParams['lines.markersize'] ** 2``.

The linewidth and edgecolor can visually interact with the marker
size, and can lead to artifacts if the marker size is smaller than
the linewidth.

If the linewidth is greater than 0 and the edgecolor is anything
but *'none'*, then the effective size of the marker will be
increased by half the linewidth because the stroke will be centered
on the edge of the shape.

To eliminate the marker edge either set *linewidth=0* or
*edgecolor='none'*.

c : array-like or list of colors or color, optional

The marker colors. Possible values:

- A scalar or sequence of n numbers to be mapped to colors using
  *cmap* and *norm*.
- A 2D array in which the rows are RGB or RGBA.
- A sequence of colors of length n.
- A single color format string.

Note that *c* should not be a single numeric RGB or RGBA sequence
because that is indistinguishable from an array of values to be
colormapped. If you want to specify the same RGB or RGBA value for
all points, use a 2D array with a single row.  Otherwise,
value-matching will have precedence in case of a size matching with
*x* and *y*.

If you wish to specify a single color for all points
prefer the *color* keyword argument.

Defaults to `None`. In that case the marker color is determined
by the value of *color*, *facecolor* or *facecolors*. In case
those are not specified or `None`, the marker color is determined
by the next color of the ``Axes``' current "shape and fill" color
cycle. This cycle defaults to :rc:`axes.prop_cycle`.

marker : `~.markers.MarkerStyle`, default: :rc:`scatter.marker`

The marker style. *marker* can be either an instance of the class
or the text shorthand for a particular marker.
See :mod:`matplotlib.markers` for more information about marker
styles.

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *c* is RGB(A).

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *c* is RGB(A).

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

This parameter is ignored if *c* is RGB(A).

alpha : float, default: None

The alpha blending value, between 0 (transparent) and 1 (opaque).

linewidths : float or array-like, default: :rc:`lines.linewidth`

The linewidth of the marker edges. Note: The default *edgecolors*
is 'face'. You may want to change this as well.

edgecolors : {'face', 'none', *None*} or color or sequence of color, default: :rc:`scatter.edgecolors`

The edge color of the marker. Possible values:

- 'face': The edge color will always be the same as the face color.
- 'none': No patch boundary will be drawn.
- A color or sequence of colors.

For non-filled markers, *edgecolors* is ignored. Instead, the color
is determined like with 'face', i.e. from *c*, *colors*, or
*facecolors*.

plotnonfinite : bool, default: False

Whether to plot points with nonfinite *c* (i.e. ``inf``, ``-inf``
or ``nan``). If ``True`` the points are drawn with the *bad*
colormap color (see `.Colormap.set_bad`).

Returns ------- `~matplotlib.collections.PathCollection`

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*, *s*, *linewidths*, *edgecolors*, *c*, *facecolor*, *facecolors*, *color*

**kwargs : `~matplotlib.collections.Collection` properties

See Also -------- plot : To plot scatter plots when markers are identical in size and

color.

Notes -----

  • The `.plot` function will be faster for scatterplots where markers don't vary in size or color.

  • Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted.

  • Fundamentally, scatter works with 1D arrays; *x*, *y*, *s*, and *c* may be input as N-D arrays, but within scatter they will be flattened. The exception is *c*, which will be flattened only if its size matches the size of *x* and *y*.

func Sci

func Sci(im *py.Object) *py.Object

Set the current image.

This image will be the target of colormap functions like “pyplot.viridis“, and other functions such as `~.pyplot.clim`. The current image is an attribute of the current Axes.

func Semilogx

func Semilogx(__llgo_va_list ...interface{}) *py.Object

Make a plot with log scaling on the x-axis.

Call signatures::

semilogx([x], y, [fmt], data=None, **kwargs)
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around `.plot` which additionally changes the x-axis to log scaling. All the concepts and parameters of plot can be used here as well.

The additional parameters *base*, *subs*, and *nonpositive* control the x-axis properties. They are just forwarded to `.Axes.set_xscale`.

Parameters ---------- base : float, default: 10

Base of the x logarithm.

subs : array-like, optional

The location of the minor xticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_xscale` for details.

nonpositive : {'mask', 'clip'}, default: 'clip'

Non-positive values in x can be masked as invalid, or clipped to a
very small positive number.

**kwargs

All parameters supported by `.plot`.

Returns ------- list of `.Line2D`

Objects representing the plotted data.

func Semilogy

func Semilogy(__llgo_va_list ...interface{}) *py.Object

Make a plot with log scaling on the y-axis.

Call signatures::

semilogy([x], y, [fmt], data=None, **kwargs)
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around `.plot` which additionally changes the y-axis to log scaling. All the concepts and parameters of plot can be used here as well.

The additional parameters *base*, *subs*, and *nonpositive* control the y-axis properties. They are just forwarded to `.Axes.set_yscale`.

Parameters ---------- base : float, default: 10

Base of the y logarithm.

subs : array-like, optional

The location of the minor yticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_yscale` for details.

nonpositive : {'mask', 'clip'}, default: 'clip'

Non-positive values in y can be masked as invalid, or clipped to a
very small positive number.

**kwargs

All parameters supported by `.plot`.

Returns ------- list of `.Line2D`

Objects representing the plotted data.

func SetCmap

func SetCmap(cmap *py.Object) *py.Object

Set the default colormap, and applies it to the current image if any.

Parameters ---------- cmap : `~matplotlib.colors.Colormap` or str

A colormap instance or the name of a registered colormap.

See Also -------- colormaps matplotlib.cm.register_cmap matplotlib.cm.get_cmap

func SetLoglevel

func SetLoglevel(__llgo_va_list ...interface{}) *py.Object

Configure Matplotlib's logging levels.

Matplotlib uses the standard library `logging` framework under the root logger 'matplotlib'. This is a helper function to:

  • set Matplotlib's root logger level
  • set the root logger handler's level, creating the handler if it does not exist yet

Typically, one should call “set_loglevel("info")“ or “set_loglevel("debug")“ to get additional debugging information.

Users or applications that are installing their own logging handlers may want to directly manipulate “logging.getLogger('matplotlib')“ rather than use this function.

Parameters ---------- level : {"notset", "debug", "info", "warning", "error", "critical"}

The log level of the handler.

Notes ----- The first time this function is called, an additional handler is attached to Matplotlib's root handler; this handler is reused every time and this function simply manipulates the logger and handler's level.

func Setp

func Setp(obj *py.Object, __llgo_va_list ...interface{}) *py.Object

Set one or more properties on an `.Artist`, or list allowed values.

Parameters ---------- obj : `~matplotlib.artist.Artist` or list of `.Artist`

The artist(s) whose properties are being set or queried.  When setting
properties, all artists are affected; when querying the allowed values,
only the first instance in the sequence is queried.

For example, two lines can be made thicker and red with a single call:

>>> x = arange(0, 1, 0.01)
>>> lines = plot(x, sin(2*pi*x), x, sin(4*pi*x))
>>> setp(lines, linewidth=2, color='r')

file : file-like, default: `sys.stdout`

Where `setp` writes its output when asked to list allowed values.

>>> with open('output.log') as file:
...     setp(line, file=file)

The default, ``None``, means `sys.stdout`.

*args, **kwargs

The properties to set.  The following combinations are supported:

- Set the linestyle of a line to be dashed:

  >>> line, = plot([1, 2, 3])
  >>> setp(line, linestyle='--')

- Set multiple properties at once:

  >>> setp(line, linewidth=2, color='r')

- List allowed values for a line's linestyle:

  >>> setp(line, 'linestyle')
  linestyle: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

- List all properties that can be set, and their allowed values:

  >>> setp(line)
  agg_filter: a filter function, ...
  [long output listing omitted]

`setp` also supports MATLAB style string/value pairs.  For example, the
following are equivalent:

>>> setp(lines, 'linewidth', 2, 'color', 'r')  # MATLAB style
>>> setp(lines, linewidth=2, color='r')        # Python style

See Also -------- getp

func Show

func Show(__llgo_va_list ...interface{}) *py.Object

Display all open figures.

Parameters ---------- block : bool, optional

Whether to wait for all figures to be closed before returning.

If `True` block and run the GUI main loop until all figure windows
are closed.

If `False` ensure that all figure windows are displayed and return
immediately.  In this case, you are responsible for ensuring
that the event loop is running to have responsive figures.

Defaults to True in non-interactive mode and to False in interactive
mode (see `.pyplot.isinteractive`).

See Also -------- ion : Enable interactive mode, which shows / updates the figure after

every plotting command, so that calling ``show()`` is not necessary.

ioff : Disable interactive mode. savefig : Save the figure to an image file instead of showing it on screen.

Notes ----- **Saving figures to file and showing a window at the same time**

If you want an image file as well as a user interface window, use `.pyplot.savefig` before `.pyplot.show`. At the end of (a blocking) “show()“ the figure is closed and thus unregistered from pyplot. Calling `.pyplot.savefig` afterwards would save a new and thus empty figure. This limitation of command order does not apply if the show is non-blocking or if you keep a reference to the figure and use `.Figure.savefig`.

**Auto-show in jupyter notebooks**

The jupyter backends (activated via “%matplotlib inline“, “%matplotlib notebook“, or “%matplotlib widget“), call “show()“ at the end of every cell by default. Thus, you usually don't have to call it explicitly there.

func Specgram

func Specgram(x *py.Object, NFFT *py.Object, Fs *py.Object, Fc *py.Object, detrend *py.Object, window *py.Object, noverlap *py.Object, cmap *py.Object, xextent *py.Object, padTo *py.Object, sides *py.Object, scaleByFreq *py.Object, mode *py.Object, scale *py.Object, vmin *py.Object, vmax *py.Object) *py.Object

Plot a spectrogram.

Compute and plot a spectrogram of data in *x*. Data are split into *NFFT* length segments and the spectrum of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. The spectrogram is plotted as a colormap (using imshow).

Parameters ---------- x : 1-D array or sequence

Array or sequence containing the data.

Fs : float, default: 2

The sampling frequency (samples per time unit).  It is used to calculate
the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`

A function or a vector of length *NFFT*.  To create window vectors see
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
function is passed as the argument, it must take a data segment as an
argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional

Which sides of the spectrum to return. 'default' is one-sided for real
data and two-sided for complex data. 'onesided' forces the return of a
one-sided spectrum, while 'twosided' forces two-sided.

pad_to : int, optional

The number of points to which the data segment is padded when performing
the FFT.  This can be different from *NFFT*, which specifies the number
of data points used.  While not increasing the actual resolution of the
spectrum (the minimum distance between resolvable peaks), this can give
more points in the plot, allowing for more detail. This corresponds to
the *n* parameter in the call to `~numpy.fft.fft`. The default is None,
which sets *pad_to* equal to *NFFT*

NFFT : int, default: 256

The number of data points used in each block for the FFT.  A power 2 is
most efficient.  This should *NOT* be used to get zero padding, or the
scaling of the result will be incorrect; use *pad_to* for this instead.

detrend : {'none', 'mean', 'linear'} or callable, default: 'none'

The function applied to each segment before fft-ing, designed to remove
the mean or linear trend.  Unlike in MATLAB, where the *detrend* parameter
is a vector, in Matplotlib it is a function.  The :mod:`~matplotlib.mlab`
module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
but you can use a custom function as well.  You can also use a string to
choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
`.detrend_mean`. 'linear' calls `.detrend_linear`.

scale_by_freq : bool, default: True

Whether the resulting density values should be scaled by the scaling
frequency, which gives density in units of 1/Hz.  This allows for
integration over the returned frequency values.  The default is True for
MATLAB compatibility.

mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}

What sort of spectrum to use.  Default is 'psd', which takes the
power spectral density.  'magnitude' returns the magnitude
spectrum.  'angle' returns the phase spectrum without unwrapping.
'phase' returns the phase spectrum with unwrapping.

noverlap : int, default: 128

The number of points of overlap between blocks.

scale : {'default', 'linear', 'dB'}

The scaling of the values in the *spec*.  'linear' is no scaling.
'dB' returns the values in dB scale.  When *mode* is 'psd',
this is dB power (10 * log10).  Otherwise, this is dB amplitude
(20 * log10). 'default' is 'dB' if *mode* is 'psd' or
'magnitude' and 'linear' otherwise.  This must be 'linear'
if *mode* is 'angle' or 'phase'.

Fc : int, default: 0

The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.

cmap : `.Colormap`, default: :rc:`image.cmap`

xextent : *None* or (xmin, xmax)

The image extent along the x-axis. The default sets *xmin* to the
left border of the first bin (*spectrum* column) and *xmax* to the
right border of the last bin. Note that for *noverlap>0* the width
of the bins is smaller than those of the segments.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*

**kwargs

Additional keyword arguments are passed on to `~.axes.Axes.imshow`
which makes the specgram image. The origin keyword argument
is not supported.

Returns ------- spectrum : 2D array

Columns are the periodograms of successive segments.

freqs : 1-D array

The frequencies corresponding to the rows in *spectrum*.

t : 1-D array

The times corresponding to midpoints of segments (i.e., the columns
in *spectrum*).

im : `.AxesImage`

The image created by imshow containing the spectrogram.

See Also -------- psd

Differs in the default overlap; in returning the mean of the
segment periodograms; in not returning times; and in generating a
line plot instead of colormap.

magnitude_spectrum

A single spectrum, similar to having a single segment when *mode*
is 'magnitude'. Plots a line instead of a colormap.

angle_spectrum

A single spectrum, similar to having a single segment when *mode*
is 'angle'. Plots a line instead of a colormap.

phase_spectrum

A single spectrum, similar to having a single segment when *mode*
is 'phase'. Plots a line instead of a colormap.

Notes ----- The parameters *detrend* and *scale_by_freq* do only apply when *mode* is set to 'psd'.

func Spring

func Spring() *py.Object

Set the colormap to 'spring'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Spy

func Spy(Z *py.Object, precision *py.Object, marker *py.Object, markersize *py.Object, aspect *py.Object, origin *py.Object) *py.Object

Plot the sparsity pattern of a 2D array.

This visualizes the non-zero values of the array.

Two plotting styles are available: image and marker. Both are available for full arrays, but only the marker style works for `scipy.sparse.spmatrix` instances.

**Image style**

If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any extra remaining keyword arguments are passed to this method.

**Marker style**

If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are *None*, a `.Line2D` object will be returned with the value of marker determining the marker type, and any remaining keyword arguments passed to `~.Axes.plot`.

Parameters ---------- Z : (M, N) array-like

The array to be plotted.

precision : float or 'present', default: 0

If *precision* is 0, any non-zero value will be plotted. Otherwise,
values of :math:`|Z| > precision` will be plotted.

For `scipy.sparse.spmatrix` instances, you can also
pass 'present'. In this case any value present in the array
will be plotted, even if it is identically zero.

aspect : {'equal', 'auto', None} or float, default: 'equal'

The aspect ratio of the Axes.  This parameter is particularly
relevant for images since it determines whether data pixels are
square.

This parameter is a shortcut for explicitly calling
`.Axes.set_aspect`. See there for further details.

- 'equal': Ensures an aspect ratio of 1. Pixels will be square.
- 'auto': The Axes is kept fixed and the aspect is adjusted so
  that the data fit in the Axes. In general, this will result in
  non-square pixels.
- *None*: Use :rc:`image.aspect`.

origin : {'upper', 'lower'}, default: :rc:`image.origin`

Place the [0, 0] index of the array in the upper left or lower left
corner of the Axes. The convention 'upper' is typically used for
matrices and images.

Returns ------- `~matplotlib.image.AxesImage` or `.Line2D`

The return type depends on the plotting style (see above).

Other Parameters ---------------- **kwargs

The supported additional parameters depend on the plotting style.

For the image style, you can pass the following additional
parameters of `~.Axes.imshow`:

- *cmap*
- *alpha*
- *url*
- any `.Artist` properties (passed on to the `.AxesImage`)

For the marker style, you can pass any `.Line2D` property except
for *linestyle*:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: color or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float

func Stackplot

func Stackplot(x *py.Object, __llgo_va_list ...interface{}) *py.Object

Draw a stacked area plot.

Parameters ---------- x : (N,) array-like

y : (M, N) array-like

The data is assumed to be unstacked. Each of the following
calls is legal::

    stackplot(x, y)           # where y has shape (M, N)
    stackplot(x, y1, y2, y3)  # where y1, y2, y3, y4 have length N

baseline : {'zero', 'sym', 'wiggle', 'weighted_wiggle'}

Method used to calculate the baseline:

- ``'zero'``: Constant zero baseline, i.e. a simple stacked plot.
- ``'sym'``:  Symmetric around zero and is sometimes called
  'ThemeRiver'.
- ``'wiggle'``: Minimizes the sum of the squared slopes.
- ``'weighted_wiggle'``: Does the same but weights to account for
  size of each layer. It is also called 'Streamgraph'-layout. More
  details can be found at http://leebyron.com/streamgraph/.

labels : list of str, optional

A sequence of labels to assign to each data series. If unspecified,
then no labels will be applied to artists.

colors : list of color, optional

A sequence of colors to be cycled through and used to color the stacked
areas. The sequence need not be exactly the same length as the number
of provided *y*, in which case the colors will repeat from the
beginning.

If not specified, the colors from the Axes property cycle will be used.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs

All other keyword arguments are passed to `.Axes.fill_between`.

Returns ------- list of `.PolyCollection`

A list of `.PolyCollection` instances, one for each element in the
stacked area plot.

func Stairs

func Stairs(values *py.Object, edges *py.Object) *py.Object

A stepwise constant function as a line with bounding edges or a filled plot.

Parameters ---------- values : array-like

The step heights.

edges : array-like

The edge positions, with ``len(edges) == len(vals) + 1``,
between which the curve takes on vals values.

orientation : {'vertical', 'horizontal'}, default: 'vertical'

The direction of the steps. Vertical means that *values* are along
the y-axis, and edges are along the x-axis.

baseline : float, array-like or None, default: 0

The bottom value of the bounding edges or when
``fill=True``, position of lower edge. If *fill* is
True or an array is passed to *baseline*, a closed
path is drawn.

fill : bool, default: False

Whether the area under the step curve should be filled.

Returns ------- StepPatch : `~matplotlib.patches.StepPatch`

Other Parameters ---------------- data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

**kwargs

`~matplotlib.patches.StepPatch` properties

func Stem

func Stem(__llgo_va_list ...interface{}) *py.Object

Create a stem plot.

A stem plot draws lines perpendicular to a baseline at each location *locs* from the baseline to *heads*, and places a marker there. For vertical stem plots (the default), the *locs* are *x* positions, and the *heads* are *y* values. For horizontal stem plots, the *locs* are *y* positions, and the *heads* are *x* values.

Call signature::

stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None)

The *locs*-positions are optional. *linefmt* may be provided as positional, but all other formats must be provided as keyword arguments.

Parameters ---------- locs : array-like, default: (0, 1, ..., len(heads) - 1)

For vertical stem plots, the x-positions of the stems.
For horizontal stem plots, the y-positions of the stems.

heads : array-like

For vertical stem plots, the y-values of the stem heads.
For horizontal stem plots, the x-values of the stem heads.

linefmt : str, optional

A string defining the color and/or linestyle of the vertical lines:

=========  =============
Character  Line Style
=========  =============
``'-'``    solid line
``'--'``   dashed line
``'-.'``   dash-dot line
``':'``    dotted line
=========  =============

Default: 'C0-', i.e. solid line with the first color of the color
cycle.

Note: Markers specified through this parameter (e.g. 'x') will be
silently ignored. Instead, markers should be specified using
*markerfmt*.

markerfmt : str, optional

A string defining the color and/or shape of the markers at the stem
heads. If the marker is not given, use the marker 'o', i.e. filled
circles. If the color is not given, use the color from *linefmt*.

basefmt : str, default: 'C3-' ('C2-' in classic mode)

A format string defining the properties of the baseline.

orientation : {'vertical', 'horizontal'}, default: 'vertical'

If 'vertical', will produce a plot with stems oriented vertically,
If 'horizontal', the stems will be oriented horizontally.

bottom : float, default: 0

The y/x-position of the baseline (depending on orientation).

label : str, default: None

The label to use for the stems in legends.

data : indexable object, optional

If given, all parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception).

Returns ------- `.StemContainer`

The container may be treated like a tuple
(*markerline*, *stemlines*, *baseline*)

Notes ----- .. seealso::

The MATLAB function
`stem <https://www.mathworks.com/help/matlab/ref/stem.html>`_
which inspired this method.

func Step

func Step(x *py.Object, y *py.Object, __llgo_va_list ...interface{}) *py.Object

Make a step plot.

Call signatures::

step(x, y, [fmt], *, data=None, where='pre', **kwargs)
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)

This is just a thin wrapper around `.plot` which changes some formatting options. Most of the concepts and parameters of plot can be used here as well.

.. note::

This method uses a standard plot with a step drawstyle: The *x*
values are the reference positions and steps extend left/right/both
directions depending on *where*.

For the common case where you know the values and edges of the
steps, use `~.Axes.stairs` instead.

Parameters ---------- x : array-like

1D sequence of x positions. It is assumed, but not checked, that
it is uniformly increasing.

y : array-like

1D sequence of y levels.

fmt : str, optional

A format string, e.g. 'g' for a green line. See `.plot` for a more
detailed description.

Note: While full format strings are accepted, it is recommended to
only specify the color. Line styles are currently ignored (use
the keyword argument *linestyle* instead). Markers are accepted
and plotted on the given positions, however, this is a rarely
needed feature for step plots.

where : {'pre', 'post', 'mid'}, default: 'pre'

Define where the steps should be placed:

- 'pre': The y value is continued constantly to the left from
  every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
  value ``y[i]``.
- 'post': The y value is continued constantly to the right from
  every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
  value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.

data : indexable object, optional

An object with labelled data. If given, provide the label names to
plot in *x* and *y*.

**kwargs

Additional parameters are the same as those for `.plot`.

Returns ------- list of `.Line2D`

Objects representing the plotted data.

func Streamplot

func Streamplot(x *py.Object, y *py.Object, u *py.Object, v *py.Object, density *py.Object, linewidth *py.Object, color *py.Object, cmap *py.Object, norm *py.Object, arrowsize *py.Object, arrowstyle *py.Object, minlength *py.Object, transform *py.Object, zorder *py.Object, startPoints *py.Object, maxlength *py.Object, integrationDirection *py.Object, brokenStreamlines *py.Object) *py.Object

Draw streamlines of a vector flow.

Parameters ---------- x, y : 1D/2D arrays

Evenly spaced strictly increasing arrays to make a grid.  If 2D, all
rows of *x* must be equal and all columns of *y* must be equal; i.e.,
they must be as if generated by ``np.meshgrid(x_1d, y_1d)``.

u, v : 2D arrays

*x* and *y*-velocities. The number of rows and columns must match
the length of *y* and *x*, respectively.

density : float or (float, float)

Controls the closeness of streamlines. When ``density = 1``, the domain
is divided into a 30x30 grid. *density* linearly scales this grid.
Each cell in the grid can have, at most, one traversing streamline.
For different densities in each direction, use a tuple
(density_x, density_y).

linewidth : float or 2D array

The width of the streamlines. With a 2D array the line width can be
varied across the grid. The array must have the same shape as *u*
and *v*.

color : color or 2D array

The streamline color. If given an array, its values are converted to
colors using *cmap* and *norm*.  The array must have the same shape
as *u* and *v*.

cmap, norm

Data normalization and colormapping parameters for *color*; only used
if *color* is an array of floats. See `~.Axes.imshow` for a detailed
description.

arrowsize : float

Scaling factor for the arrow size.

arrowstyle : str

Arrow style specification.
See `~matplotlib.patches.FancyArrowPatch`.

minlength : float

Minimum length of streamline in axes coordinates.

start_points : (N, 2) array

Coordinates of starting points for the streamlines in data coordinates
(the same coordinates as the *x* and *y* arrays).

zorder : float

The zorder of the streamlines and arrows.
Artists with lower zorder values are drawn first.

maxlength : float

Maximum length of streamline in axes coordinates.

integration_direction : {'forward', 'backward', 'both'}, default: 'both'

Integrate the streamline in forward, backward or both directions.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*, *u*, *v*, *start_points*

broken_streamlines : boolean, default: True

If False, forces streamlines to continue until they
leave the plot domain.  If True, they may be terminated if they
come too close to another streamline.

Returns ------- StreamplotSet

Container object with attributes

- ``lines``: `.LineCollection` of streamlines

- ``arrows``: `.PatchCollection` containing `.FancyArrowPatch`
  objects representing the arrows half-way along streamlines.

This container will probably change in the future to allow changes
to the colormap, alpha, etc. for both lines and arrows, but these
changes should be backward compatible.

func Subplot

func Subplot(__llgo_va_list ...interface{}) *py.Object

Add an Axes to the current figure or retrieve an existing Axes.

This is a wrapper of `.Figure.add_subplot` which provides additional behavior when working with the implicit API (see the notes section).

Call signatures::

subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)

Parameters ---------- *args : int, (int, int, *index*), or `.SubplotSpec`, default: (1, 1, 1)

The position of the subplot described by one of

- Three integers (*nrows*, *ncols*, *index*). The subplot will take the
  *index* position on a grid with *nrows* rows and *ncols* columns.
  *index* starts at 1 in the upper left corner and increases to the
  right. *index* can also be a two-tuple specifying the (*first*,
  *last*) indices (1-based, and including *last*) of the subplot, e.g.,
  ``fig.add_subplot(3, 1, (1, 2))`` makes a subplot that spans the
  upper 2/3 of the figure.
- A 3-digit integer. The digits are interpreted as if given separately
  as three single-digit integers, i.e. ``fig.add_subplot(235)`` is the
  same as ``fig.add_subplot(2, 3, 5)``. Note that this can only be used
  if there are no more than 9 subplots.
- A `.SubplotSpec`.

projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, optional

The projection type of the subplot (`~.axes.Axes`). *str* is the name
of a custom projection, see `~matplotlib.projections`. The default
None results in a 'rectilinear' projection.

polar : bool, default: False

If True, equivalent to projection='polar'.

sharex, sharey : `~matplotlib.axes.Axes`, optional

Share the x or y `~matplotlib.axis` with sharex and/or sharey. The
axis will have the same limits, ticks, and scale as the axis of the
shared axes.

label : str

A label for the returned axes.

Returns ------- `~.axes.Axes`

The Axes of the subplot. The returned Axes can actually be an instance
of a subclass, such as `.projections.polar.PolarAxes` for polar
projections.

Other Parameters ---------------- **kwargs

This method also takes the keyword arguments for the returned axes
base class; except for the *figure* argument. The keyword arguments
for the rectilinear base class `~.axes.Axes` can be found in
the following table but there might also be other keyword
arguments if another projection is used.

Properties:
adjustable: {'box', 'datalim'}
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
anchor: (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', ...}
animated: bool
aspect: {'auto', 'equal'} or float
autoscale_on: bool
autoscalex_on: unknown
autoscaley_on: unknown
axes_locator: Callable[[Axes, Renderer], Bbox]
axisbelow: bool or 'line'
box_aspect: float or None
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
facecolor or fc: color
figure: `~matplotlib.figure.Figure`
frame_on: bool
gid: str
in_layout: bool
label: object
mouseover: bool
navigate: bool
navigate_mode: unknown
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
position: [left, bottom, width, height] or `~matplotlib.transforms.Bbox`
prop_cycle: `~cycler.Cycler`
rasterization_zorder: float or None
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
subplotspec: unknown
title: str
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
xbound: (lower: float, upper: float)
xlabel: str
xlim: (left: float, right: float)
xmargin: float greater than -0.5
xscale: unknown
xticklabels: unknown
xticks: unknown
ybound: (lower: float, upper: float)
ylabel: str
ylim: (bottom: float, top: float)
ymargin: float greater than -0.5
yscale: unknown
yticklabels: unknown
yticks: unknown
zorder: float

Notes ----- Creating a new Axes will delete any preexisting Axes that overlaps with it beyond sharing a boundary::

import matplotlib.pyplot as plt
# plot a line, implicitly creating a subplot(111)
plt.plot([1, 2, 3])
# now create a subplot which represents the top plot of a grid
# with 2 rows and 1 column. Since this subplot will overlap the
# first, the plot (and its axes) previously created, will be removed
plt.subplot(211)

If you do not want this behavior, use the `.Figure.add_subplot` method or the `.pyplot.axes` function instead.

If no *kwargs* are passed and there exists an Axes in the location specified by *args* then that Axes will be returned rather than a new Axes being created.

If *kwargs* are passed and there exists an Axes in the location specified by *args*, the projection type is the same, and the *kwargs* match with the existing Axes, then the existing Axes is returned. Otherwise a new Axes is created with the specified parameters. We save a reference to the *kwargs* which we use for this comparison. If any of the values in *kwargs* are mutable we will not detect the case where they are mutated. In these cases we suggest using `.Figure.add_subplot` and the explicit Axes API rather than the implicit pyplot API.

See Also -------- .Figure.add_subplot .pyplot.subplots .pyplot.axes .Figure.subplots

Examples -------- ::

plt.subplot(221)

# equivalent but more general
ax1 = plt.subplot(2, 2, 1)

# add a subplot with no frame
ax2 = plt.subplot(222, frameon=False)

# add a polar subplot
plt.subplot(223, projection='polar')

# add a red subplot that shares the x-axis with ax1
plt.subplot(224, sharex=ax1, facecolor='red')

# delete ax2 from the figure
plt.delaxes(ax2)

# add ax2 to the figure again
plt.subplot(ax2)

# make the first axes "current" again
plt.subplot(221)

func Subplot2grid

func Subplot2grid(shape *py.Object, loc *py.Object, rowspan *py.Object, colspan *py.Object, fig *py.Object) *py.Object

Create a subplot at a specific location inside a regular grid.

Parameters ---------- shape : (int, int)

Number of rows and of columns of the grid in which to place axis.

loc : (int, int)

Row number and column number of the axis location within the grid.

rowspan : int, default: 1

Number of rows for the axis to span downwards.

colspan : int, default: 1

Number of columns for the axis to span to the right.

fig : `.Figure`, optional

Figure to place the subplot in. Defaults to the current figure.

**kwargs

Additional keyword arguments are handed to `~.Figure.add_subplot`.

Returns ------- `~.axes.Axes`

The Axes of the subplot. The returned Axes can actually be an instance
of a subclass, such as `.projections.polar.PolarAxes` for polar
projections.

Notes ----- The following call ::

ax = subplot2grid((nrows, ncols), (row, col), rowspan, colspan)

is identical to ::

fig = gcf()
gs = fig.add_gridspec(nrows, ncols)
ax = fig.add_subplot(gs[row:row+rowspan, col:col+colspan])

func SubplotMosaic

func SubplotMosaic(mosaic *py.Object) *py.Object

Build a layout of Axes based on ASCII art or nested lists.

This is a helper function to build complex GridSpec layouts visually.

See :ref:`mosaic` for an example and full API documentation

Parameters ---------- mosaic : list of list of {hashable or nested} or str

A visual layout of how you want your Axes to be arranged
labeled as strings.  For example ::

   x = [['A panel', 'A panel', 'edge'],
        ['C panel', '.',       'edge']]

produces 4 axes:

- 'A panel' which is 1 row high and spans the first two columns
- 'edge' which is 2 rows high and is on the right edge
- 'C panel' which in 1 row and 1 column wide in the bottom left
- a blank space 1 row and 1 column wide in the bottom center

Any of the entries in the layout can be a list of lists
of the same form to create nested layouts.

If input is a str, then it must be of the form ::

  '''
  AAE
  C.E
  '''

where each character is a column and each line is a row.
This only allows only single character Axes labels and does
not allow nesting but is very terse.

sharex, sharey : bool, default: False

If True, the x-axis (*sharex*) or y-axis (*sharey*) will be shared
among all subplots.  In that case, tick label visibility and axis units
behave as for `subplots`.  If False, each subplot's x- or y-axis will
be independent.

width_ratios : array-like of length *ncols*, optional

Defines the relative widths of the columns. Each column gets a
relative width of ``width_ratios[i] / sum(width_ratios)``.
If not given, all columns will have the same width.  Convenience
for ``gridspec_kw={'width_ratios': [...]}``.

height_ratios : array-like of length *nrows*, optional

Defines the relative heights of the rows. Each row gets a
relative height of ``height_ratios[i] / sum(height_ratios)``.
If not given, all rows will have the same height. Convenience
for ``gridspec_kw={'height_ratios': [...]}``.

empty_sentinel : object, optional

Entry in the layout to mean "leave this space empty".  Defaults
to ``'.'``. Note, if *layout* is a string, it is processed via
`inspect.cleandoc` to remove leading white space, which may
interfere with using white-space as the empty sentinel.

subplot_kw : dict, optional

Dictionary with keywords passed to the `.Figure.add_subplot` call
used to create each subplot.  These values may be overridden by
values in *per_subplot_kw*.

per_subplot_kw : dict, optional

A dictionary mapping the Axes identifiers or tuples of identifiers
to a dictionary of keyword arguments to be passed to the
`.Figure.add_subplot` call used to create each subplot.  The values
in these dictionaries have precedence over the values in
*subplot_kw*.

If *mosaic* is a string, and thus all keys are single characters,
it is possible to use a single string instead of a tuple as keys;
i.e. ``"AB"`` is equivalent to ``("A", "B")``.

.. versionadded:: 3.7

gridspec_kw : dict, optional

Dictionary with keywords passed to the `.GridSpec` constructor used
to create the grid the subplots are placed on.

**fig_kw

All additional keyword arguments are passed to the
`.pyplot.figure` call.

Returns ------- fig : `.Figure`

The new figure

dict[label, Axes]

A dictionary mapping the labels to the Axes objects.  The order of
the axes is left-to-right and top-to-bottom of their position in the
total layout.

func SubplotTool

func SubplotTool(targetfig *py.Object) *py.Object

Launch a subplot tool window for a figure.

Returns ------- `matplotlib.widgets.SubplotTool`

func Subplots

func Subplots(nrows *py.Object, ncols *py.Object) *py.Object

Create a figure and a set of subplots.

This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call.

Parameters ---------- nrows, ncols : int, default: 1

Number of rows/columns of the subplot grid.

sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False

Controls sharing of properties among x (*sharex*) or y (*sharey*)
axes:

- True or 'all': x- or y-axis will be shared among all subplots.
- False or 'none': each subplot x- or y-axis will be independent.
- 'row': each subplot row will share an x- or y-axis.
- 'col': each subplot column will share an x- or y-axis.

When subplots have a shared x-axis along a column, only the x tick
labels of the bottom subplot are created. Similarly, when subplots
have a shared y-axis along a row, only the y tick labels of the first
column subplot are created. To later turn other subplots' ticklabels
on, use `~matplotlib.axes.Axes.tick_params`.

When subplots have a shared axis that has units, calling
`~matplotlib.axis.Axis.set_units` will update each axis with the
new units.

squeeze : bool, default: True

  • If True, extra dimensions are squeezed out from the returned array of `~matplotlib.axes.Axes`:

  • if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar.

  • for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of Axes objects.

  • for NxM, subplots with N>1 and M>1 are returned as a 2D array.

  • If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1.

width_ratios : array-like of length *ncols*, optional

Defines the relative widths of the columns. Each column gets a
relative width of ``width_ratios[i] / sum(width_ratios)``.
If not given, all columns will have the same width.  Equivalent
to ``gridspec_kw={'width_ratios': [...]}``.

height_ratios : array-like of length *nrows*, optional

Defines the relative heights of the rows. Each row gets a
relative height of ``height_ratios[i] / sum(height_ratios)``.
If not given, all rows will have the same height. Convenience
for ``gridspec_kw={'height_ratios': [...]}``.

subplot_kw : dict, optional

Dict with keywords passed to the
`~matplotlib.figure.Figure.add_subplot` call used to create each
subplot.

gridspec_kw : dict, optional

Dict with keywords passed to the `~matplotlib.gridspec.GridSpec`
constructor used to create the grid the subplots are placed on.

**fig_kw

All additional keyword arguments are passed to the
`.pyplot.figure` call.

Returns ------- fig : `.Figure`

ax : `~matplotlib.axes.Axes` or array of Axes

*ax* can be either a single `~.axes.Axes` object, or an array of Axes
objects if more than one subplot was created.  The dimensions of the
resulting array can be controlled with the squeeze keyword, see above.

Typical idioms for handling the return value are::

    # using the variable ax for single a Axes
    fig, ax = plt.subplots()

    # using the variable axs for multiple Axes
    fig, axs = plt.subplots(2, 2)

    # using tuple unpacking for multiple Axes
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

The names ``ax`` and pluralized ``axs`` are preferred over ``axes``
because for the latter it's not clear if it refers to a single
`~.axes.Axes` instance or a collection of these.

See Also -------- .pyplot.figure .pyplot.subplot .pyplot.axes .Figure.subplots .Figure.add_subplot

Examples -------- ::

# First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

# Create just a figure and only one subplot
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

# Create two subplots and unpack the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

# Create four polar axes and access them through the returned array
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)

# Share a X axis with each column of subplots
plt.subplots(2, 2, sharex='col')

# Share a Y axis with each row of subplots
plt.subplots(2, 2, sharey='row')

# Share both X and Y axes with all subplots
plt.subplots(2, 2, sharex='all', sharey='all')

# Note that this is the same as
plt.subplots(2, 2, sharex=True, sharey=True)

# Create figure number 10 with a single subplot
# and clears it if it already exists.
fig, ax = plt.subplots(num=10, clear=True)

func SubplotsAdjust

func SubplotsAdjust(left *py.Object, bottom *py.Object, right *py.Object, top *py.Object, wspace *py.Object, hspace *py.Object) *py.Object

Adjust the subplot layout parameters.

Unset parameters are left unmodified; initial values are given by :rc:`figure.subplot.[name]`.

Parameters ---------- left : float, optional

The position of the left edge of the subplots,
as a fraction of the figure width.

right : float, optional

The position of the right edge of the subplots,
as a fraction of the figure width.

bottom : float, optional

The position of the bottom edge of the subplots,
as a fraction of the figure height.

top : float, optional

The position of the top edge of the subplots,
as a fraction of the figure height.

wspace : float, optional

The width of the padding between subplots,
as a fraction of the average Axes width.

hspace : float, optional

The height of the padding between subplots,
as a fraction of the average Axes height.

func Summer

func Summer() *py.Object

Set the colormap to 'summer'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Suptitle

func Suptitle(t *py.Object) *py.Object

Add a centered suptitle to the figure.

Parameters ---------- t : str

The suptitle text.

x : float, default: 0.5

The x location of the text in figure coordinates.

y : float, default: 0.98

The y location of the text in figure coordinates.

horizontalalignment, ha : {'center', 'left', 'right'}, default: center

The horizontal alignment of the text relative to (*x*, *y*).

verticalalignment, va : {'top', 'center', 'bottom', 'baseline'}, default: top

The vertical alignment of the text relative to (*x*, *y*).

fontsize, size : default: :rc:`figure.titlesize`

The font size of the text. See `.Text.set_size` for possible
values.

fontweight, weight : default: :rc:`figure.titleweight`

The font weight of the text. See `.Text.set_weight` for possible
values.

Returns ------- text

The `.Text` instance of the suptitle.

Other Parameters ---------------- fontproperties : None or dict, optional

A dict of font properties. If *fontproperties* is given the
default values for font size and weight are taken from the
`.FontProperties` defaults. :rc:`figure.titlesize` and
:rc:`figure.titleweight` are ignored in this case.

**kwargs

Additional kwargs are `matplotlib.text.Text` properties.

func SwitchBackend

func SwitchBackend(newbackend *py.Object) *py.Object

Set the pyplot backend.

Switching to an interactive backend is possible only if no event loop for another interactive backend has started. Switching to and from non-interactive backends is always possible.

If the new backend is different than the current backend then all open Figures will be closed via “plt.close('all')“.

Parameters ---------- newbackend : str

The case-insensitive name of the backend to use.

func Table

func Table(cellText *py.Object, cellColours *py.Object, cellLoc *py.Object, colWidths *py.Object, rowLabels *py.Object, rowColours *py.Object, rowLoc *py.Object, colLabels *py.Object, colColours *py.Object, colLoc *py.Object, loc *py.Object, bbox *py.Object, edges *py.Object) *py.Object

Add a table to an `~.axes.Axes`.

At least one of *cellText* or *cellColours* must be specified. These parameters must be 2D lists, in which the outer lists define the rows and the inner list define the column values per row. Each row must have the same number of elements.

The table can optionally have row and column headers, which are configured using *rowLabels*, *rowColours*, *rowLoc* and *colLabels*, *colColours*, *colLoc* respectively.

For finer grained control over tables, use the `.Table` class and add it to the axes with `.Axes.add_table`.

Parameters ---------- cellText : 2D list of str, optional

The texts to place into the table cells.

*Note*: Line breaks in the strings are currently not accounted for and
will result in the text exceeding the cell boundaries.

cellColours : 2D list of colors, optional

The background colors of the cells.

cellLoc : {'left', 'center', 'right'}, default: 'right'

The alignment of the text within the cells.

colWidths : list of float, optional

The column widths in units of the axes. If not given, all columns will
have a width of *1 / ncols*.

rowLabels : list of str, optional

The text of the row header cells.

rowColours : list of colors, optional

The colors of the row header cells.

rowLoc : {'left', 'center', 'right'}, default: 'left'

The text alignment of the row header cells.

colLabels : list of str, optional

The text of the column header cells.

colColours : list of colors, optional

The colors of the column header cells.

colLoc : {'left', 'center', 'right'}, default: 'left'

The text alignment of the column header cells.

loc : str, optional

The position of the cell with respect to *ax*. This must be one of
the `~.Table.codes`.

bbox : `.Bbox` or [xmin, ymin, width, height], optional

A bounding box to draw the table into. If this is not *None*, this
overrides *loc*.

edges : substring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'}

The cell edges to be drawn with a line. See also
`~.Cell.visible_edges`.

Returns ------- `~matplotlib.table.Table`

The created table.

Other Parameters ---------------- **kwargs

`.Table` properties.

Properties:

agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
figure: `~matplotlib.figure.Figure`
fontsize: float
gid: str
in_layout: bool
label: object
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
visible: bool
zorder: float

func Text

func Text(x *py.Object, y *py.Object, s *py.Object, fontdict *py.Object) *py.Object

Add text to the Axes.

Add the text *s* to the Axes at location *x*, *y* in data coordinates, with a default “horizontalalignment“ on the “left“ and “verticalalignment“ at the “baseline“. See :doc:`/gallery/text_labels_and_annotations/text_alignment`.

Parameters ---------- x, y : float

The position to place the text. By default, this is in data
coordinates. The coordinate system can be changed using the
*transform* parameter.

s : str

The text.

fontdict : dict, default: None

.. admonition:: Discouraged

   The use of *fontdict* is discouraged. Parameters should be passed as
   individual keyword arguments or using dictionary-unpacking
   ``text(..., **fontdict)``.

A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by `.rcParams`.

Returns ------- `.Text`

The created `.Text` instance.

Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties.

Other miscellaneous text parameters.

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased: bool
backgroundcolor: color
bbox: dict with properties for `.patches.FancyBboxPatch`
clip_box: unknown
clip_on: unknown
clip_path: unknown
color or c: color
figure: `~matplotlib.figure.Figure`
fontfamily or family or fontname: {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties: `.font_manager.FontProperties` or `str` or `pathlib.Path`
fontsize or size: float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch: {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style: {'normal', 'italic', 'oblique'}
fontvariant or variant: {'normal', 'small-caps'}
fontweight or weight: {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid: str
horizontalalignment or ha: {'left', 'center', 'right'}
in_layout: bool
label: object
linespacing: float (multiple of font size)
math_fontfamily: str
mouseover: bool
multialignment or ma: {'left', 'right', 'center'}
parse_math: bool
path_effects: list of `.AbstractPathEffect`
picker: None or bool or float or callable
position: (float, float)
rasterized: bool
rotation: float or {'vertical', 'horizontal'}
rotation_mode: {None, 'default', 'anchor'}
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
text: object
transform: `~matplotlib.transforms.Transform`
transform_rotates_text: bool
url: str
usetex: bool or None
verticalalignment or va: {'baseline', 'bottom', 'center', 'center_baseline', 'top'}
visible: bool
wrap: bool
x: float
y: float
zorder: float

Examples -------- Individual keyword arguments can be used to override any given parameter::

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords ((0, 0) is lower-left and (1, 1) is upper-right). The example below places text in the center of the Axes::

>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
...      verticalalignment='center', transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using the keyword *bbox*. *bbox* is a dictionary of `~matplotlib.patches.Rectangle` properties. For example::

>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))

func Thetagrids

func Thetagrids(angles *py.Object, labels *py.Object, fmt *py.Object) *py.Object

Get or set the theta gridlines on the current polar plot.

Call signatures::

lines, labels = thetagrids()
lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs)

When called with no arguments, `.thetagrids` simply returns the tuple (*lines*, *labels*). When called with arguments, the labels will appear at the specified angles.

Parameters ---------- angles : tuple with floats, degrees

The angles of the theta gridlines.

labels : tuple with strings or None

The labels to use at each radial gridline. The
`.projections.polar.ThetaFormatter` will be used if None.

fmt : str or None

Format string used in `matplotlib.ticker.FormatStrFormatter`.
For example '%f'. Note that the angle in radians will be used.

Returns ------- lines : list of `.lines.Line2D`

The theta gridlines.

labels : list of `.text.Text`

The tick labels.

Other Parameters ---------------- **kwargs

*kwargs* are optional `.Text` properties for the labels.

See Also -------- .pyplot.rgrids .projections.polar.PolarAxes.set_thetagrids .Axis.get_gridlines .Axis.get_ticklabels

Examples -------- ::

# set the locations of the angular gridlines
lines, labels = thetagrids(range(45, 360, 90))

# set the locations and labels of the angular gridlines
lines, labels = thetagrids(range(45, 360, 90), ('NE', 'NW', 'SW', 'SE'))

func TickParams

func TickParams(axis *py.Object) *py.Object

Change the appearance of ticks, tick labels, and gridlines.

Tick properties that are not explicitly set using the keyword arguments remain unchanged unless *reset* is True. For the current style settings, see `.Axis.get_tick_params`.

Parameters ---------- axis : {'x', 'y', 'both'}, default: 'both'

The axis to which the parameters are applied.

which : {'major', 'minor', 'both'}, default: 'major'

The group of ticks to which the parameters are applied.

reset : bool, default: False

Whether to reset the ticks to defaults before updating them.

Other Parameters ---------------- direction : {'in', 'out', 'inout'}

Puts ticks inside the Axes, outside the Axes, or both.

length : float

Tick length in points.

width : float

Tick width in points.

color : color

Tick color.

pad : float

Distance in points between tick and label.

labelsize : float or str

Tick label font size in points or as a string (e.g., 'large').

labelcolor : color

Tick label color.

labelfontfamily : str

Tick label font.

colors : color

Tick color and label color.

zorder : float

Tick and label zorder.

bottom, top, left, right : bool

Whether to draw the respective ticks.

labelbottom, labeltop, labelleft, labelright : bool

Whether to draw the respective tick labels.

labelrotation : float

Tick label rotation

grid_color : color

Gridline color.

grid_alpha : float

Transparency of gridlines: 0 (transparent) to 1 (opaque).

grid_linewidth : float

Width of gridlines in points.

grid_linestyle : str

Any valid `.Line2D` line style spec.

Examples -------- ::

ax.tick_params(direction='out', length=6, width=2, colors='r',
               grid_color='r', grid_alpha=0.5)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points. Tick labels will also be red. Gridlines will be red and translucent.

func TicklabelFormat

func TicklabelFormat() *py.Object

Configure the `.ScalarFormatter` used by default for linear Axes.

If a parameter is not set, the corresponding property of the formatter is left unchanged.

Parameters ---------- axis : {'x', 'y', 'both'}, default: 'both'

The axis to configure.  Only major ticks are affected.

style : {'sci', 'scientific', 'plain'}

Whether to use scientific notation.
The formatter default is to use scientific notation.

scilimits : pair of ints (m, n)

Scientific notation is used only for numbers outside the range
10\ :sup:`m` to 10\ :sup:`n` (and only if the formatter is
configured to use scientific notation at all).  Use (0, 0) to
include all numbers.  Use (m, m) where m != 0 to fix the order of
magnitude to 10\ :sup:`m`.
The formatter default is :rc:`axes.formatter.limits`.

useOffset : bool or float

If True, the offset is calculated as needed.
If False, no offset is used.
If a numeric value, it sets the offset.
The formatter default is :rc:`axes.formatter.useoffset`.

useLocale : bool

Whether to format the number using the current locale or using the
C (English) locale.  This affects e.g. the decimal separator.  The
formatter default is :rc:`axes.formatter.use_locale`.

useMathText : bool

Render the offset and scientific notation in mathtext.
The formatter default is :rc:`axes.formatter.use_mathtext`.

Raises ------ AttributeError

If the current formatter is not a `.ScalarFormatter`.

func TightLayout

func TightLayout() *py.Object

Adjust the padding between and around subplots.

To exclude an artist on the Axes from the bounding box calculation that determines the subplot parameters (i.e. legend, or annotation), set “a.set_in_layout(False)“ for that artist.

Parameters ---------- pad : float, default: 1.08

Padding between the figure edge and the edges of subplots,
as a fraction of the font size.

h_pad, w_pad : float, default: *pad*

Padding (height/width) between edges of adjacent subplots,
as a fraction of the font size.

rect : tuple (left, bottom, right, top), default: (0, 0, 1, 1)

A rectangle in normalized figure coordinates into which the whole
subplots area (including labels) will fit.

See Also -------- .Figure.set_layout_engine .pyplot.tight_layout

func Title

func Title(label *py.Object, fontdict *py.Object, loc *py.Object, pad *py.Object) *py.Object

Set a title for the Axes.

Set one of the three available Axes titles. The available titles are positioned above the Axes in the center, flush with the left edge, and flush with the right edge.

Parameters ---------- label : str

Text to use for the title

fontdict : dict

.. admonition:: Discouraged

   The use of *fontdict* is discouraged. Parameters should be passed as
   individual keyword arguments or using dictionary-unpacking
   ``set_title(..., **fontdict)``.

A dictionary controlling the appearance of the title text,
the default *fontdict* is::

   {'fontsize': rcParams['axes.titlesize'],
    'fontweight': rcParams['axes.titleweight'],
    'color': rcParams['axes.titlecolor'],
    'verticalalignment': 'baseline',
    'horizontalalignment': loc}

loc : {'center', 'left', 'right'}, default: :rc:`axes.titlelocation`

Which title to set.

y : float, default: :rc:`axes.titley`

Vertical Axes location for the title (1.0 is the top).  If
None (the default) and :rc:`axes.titley` is also None, y is
determined automatically to avoid decorators on the Axes.

pad : float, default: :rc:`axes.titlepad`

The offset of the title from the top of the Axes, in points.

Returns ------- `.Text`

The matplotlib text instance representing the title

Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties

Other keyword arguments are text properties, see `.Text` for a list
of valid text properties.

func Tricontour

func Tricontour(__llgo_va_list ...interface{}) *py.Object

Draw contour lines on an unstructured triangular grid.

Call signatures::

tricontour(triangulation, z, [levels], ...)
tricontour(x, y, z, [levels], *, [triangles=triangles], [mask=mask], ...)

The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. See `.Triangulation` for an explanation of these parameters. If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly.

It is possible to pass *triangles* positionally, i.e. “tricontour(x, y, triangles, z, ...)“. However, this is discouraged. For more clarity, pass *triangles* via keyword argument.

Parameters ---------- triangulation : `.Triangulation`, optional

An already created triangular grid.

x, y, triangles, mask

Parameters defining the triangular grid. See `.Triangulation`.
This is mutually exclusive with specifying *triangulation*.

z : array-like

The height values over which the contour is drawn.  Color-mapping is
controlled by *cmap*, *norm*, *vmin*, and *vmax*.

.. note::
    All values in *z* must be finite. Hence, nan and inf values must
    either be removed or `~.Triangulation.set_mask` be used.

levels : int or array-like, optional

Determines the number and positions of the contour lines / regions.

If an int *n*, use `~matplotlib.ticker.MaxNLocator`, which tries to
automatically choose no more than *n+1* "nice" contour levels between
between minimum and maximum numeric values of *Z*.

If array-like, draw contour lines at the specified levels.  The values must
be in increasing order.

Returns ------- `~matplotlib.tri.TriContourSet`

Other Parameters ---------------- colors : color string or sequence of colors, optional

The colors of the levels, i.e., the contour lines.

The sequence is cycled for the levels in ascending order. If the sequence
is shorter than the number of levels, it is repeated.

As a shortcut, single color strings may be used in place of one-element
lists, i.e. ``'red'`` instead of ``['red']`` to color all levels with the
same color. This shortcut does only work for color strings, not for other
ways of specifying colors.

By default (value *None*), the colormap specified by *cmap* will be used.

alpha : float, default: 1

The alpha blending value, between 0 (transparent) and 1 (opaque).

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *colors* is set.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *colors* is set.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

If *vmin* or *vmax* are not given, the default color scaling is based on
*levels*.

This parameter is ignored if *colors* is set.

origin : {*None*, 'upper', 'lower', 'image'}, default: None

Determines the orientation and exact position of *z* by specifying the
position of ``z[0, 0]``.  This is only relevant, if *X*, *Y* are not given.

- *None*: ``z[0, 0]`` is at X=0, Y=0 in the lower left corner.
- 'lower': ``z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner.
- 'upper': ``z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left corner.
- 'image': Use the value from :rc:`image.origin`.

extent : (x0, x1, y0, y1), optional

If *origin* is not *None*, then *extent* is interpreted as in `.imshow`: it
gives the outer pixel boundaries. In this case, the position of z[0, 0] is
the center of the pixel, not a corner. If *origin* is *None*, then
(*x0*, *y0*) is the position of z[0, 0], and (*x1*, *y1*) is the position
of z[-1, -1].

This argument is ignored if *X* and *Y* are specified in the call to
contour.

locator : ticker.Locator subclass, optional

The locator is used to determine the contour levels if they are not given
explicitly via *levels*.
Defaults to `~.ticker.MaxNLocator`.

extend : {'neither', 'both', 'min', 'max'}, default: 'neither'

Determines the ``tricontour``-coloring of values that are outside the
*levels* range.

If 'neither', values outside the *levels* range are not colored.  If 'min',
'max' or 'both', color the values below, above or below and above the
*levels* range.

Values below ``min(levels)`` and above ``max(levels)`` are mapped to the
under/over values of the `.Colormap`. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values
are the edge values of the colormap.  You may want to set these values
explicitly using `.Colormap.set_under` and `.Colormap.set_over`.

.. note::

    An existing `.TriContourSet` does not get notified if properties of its
    colormap are changed. Therefore, an explicit call to
    `.ContourSet.changed()` is needed after modifying the colormap. The
    explicit call can be left out, if a colorbar is assigned to the
    `.TriContourSet` because it internally calls `.ContourSet.changed()`.

xunits, yunits : registered units, optional

Override axis units by specifying an instance of a
:class:`matplotlib.units.ConversionInterface`.

antialiased : bool, optional

Enable antialiasing, overriding the defaults.  For
filled contours, the default is *True*.  For line contours,
it is taken from :rc:`lines.antialiased`.

linewidths : float or array-like, default: :rc:`contour.linewidth`

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with
the linewidths in the order specified.

If None, this falls back to :rc:`lines.linewidth`.

linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional

If *linestyles* is *None*, the default is 'solid' unless the lines are
monochrome.  In that case, negative contours will take their linestyle
from :rc:`contour.negative_linestyle` setting.

*linestyles* can also be an iterable of the above strings specifying a
set of linestyles to be used. If this iterable is shorter than the
number of contour levels it will be repeated as necessary.

func Tricontourf

func Tricontourf(__llgo_va_list ...interface{}) *py.Object

Draw contour regions on an unstructured triangular grid.

Call signatures::

tricontourf(triangulation, z, [levels], ...)
tricontourf(x, y, z, [levels], *, [triangles=triangles], [mask=mask], ...)

The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. See `.Triangulation` for an explanation of these parameters. If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly.

It is possible to pass *triangles* positionally, i.e. “tricontourf(x, y, triangles, z, ...)“. However, this is discouraged. For more clarity, pass *triangles* via keyword argument.

Parameters ---------- triangulation : `.Triangulation`, optional

An already created triangular grid.

x, y, triangles, mask

Parameters defining the triangular grid. See `.Triangulation`.
This is mutually exclusive with specifying *triangulation*.

z : array-like

The height values over which the contour is drawn.  Color-mapping is
controlled by *cmap*, *norm*, *vmin*, and *vmax*.

.. note::
    All values in *z* must be finite. Hence, nan and inf values must
    either be removed or `~.Triangulation.set_mask` be used.

levels : int or array-like, optional

Determines the number and positions of the contour lines / regions.

If an int *n*, use `~matplotlib.ticker.MaxNLocator`, which tries to
automatically choose no more than *n+1* "nice" contour levels between
between minimum and maximum numeric values of *Z*.

If array-like, draw contour lines at the specified levels.  The values must
be in increasing order.

Returns ------- `~matplotlib.tri.TriContourSet`

Other Parameters ---------------- colors : color string or sequence of colors, optional

The colors of the levels, i.e., the contour regions.

The sequence is cycled for the levels in ascending order. If the sequence
is shorter than the number of levels, it is repeated.

As a shortcut, single color strings may be used in place of one-element
lists, i.e. ``'red'`` instead of ``['red']`` to color all levels with the
same color. This shortcut does only work for color strings, not for other
ways of specifying colors.

By default (value *None*), the colormap specified by *cmap* will be used.

alpha : float, default: 1

The alpha blending value, between 0 (transparent) and 1 (opaque).

cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`

The Colormap instance or registered colormap name used to map scalar data
to colors.

This parameter is ignored if *colors* is set.

norm : str or `~matplotlib.colors.Normalize`, optional

The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.

If given, this can be one of the following:

- An instance of `.Normalize` or one of its subclasses
  (see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
  list of available scales, call `matplotlib.scale.get_scale_names()`.
  In that case, a suitable `.Normalize` subclass is dynamically generated
  and instantiated.

This parameter is ignored if *colors* is set.

vmin, vmax : float, optional

When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).

If *vmin* or *vmax* are not given, the default color scaling is based on
*levels*.

This parameter is ignored if *colors* is set.

origin : {*None*, 'upper', 'lower', 'image'}, default: None

Determines the orientation and exact position of *z* by specifying the
position of ``z[0, 0]``.  This is only relevant, if *X*, *Y* are not given.

- *None*: ``z[0, 0]`` is at X=0, Y=0 in the lower left corner.
- 'lower': ``z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner.
- 'upper': ``z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left corner.
- 'image': Use the value from :rc:`image.origin`.

extent : (x0, x1, y0, y1), optional

If *origin* is not *None*, then *extent* is interpreted as in `.imshow`: it
gives the outer pixel boundaries. In this case, the position of z[0, 0] is
the center of the pixel, not a corner. If *origin* is *None*, then
(*x0*, *y0*) is the position of z[0, 0], and (*x1*, *y1*) is the position
of z[-1, -1].

This argument is ignored if *X* and *Y* are specified in the call to
contour.

locator : ticker.Locator subclass, optional

The locator is used to determine the contour levels if they are not given
explicitly via *levels*.
Defaults to `~.ticker.MaxNLocator`.

extend : {'neither', 'both', 'min', 'max'}, default: 'neither'

Determines the ``tricontourf``-coloring of values that are outside the
*levels* range.

If 'neither', values outside the *levels* range are not colored.  If 'min',
'max' or 'both', color the values below, above or below and above the
*levels* range.

Values below ``min(levels)`` and above ``max(levels)`` are mapped to the
under/over values of the `.Colormap`. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values
are the edge values of the colormap.  You may want to set these values
explicitly using `.Colormap.set_under` and `.Colormap.set_over`.

.. note::

    An existing `.TriContourSet` does not get notified if properties of its
    colormap are changed. Therefore, an explicit call to
    `.ContourSet.changed()` is needed after modifying the colormap. The
    explicit call can be left out, if a colorbar is assigned to the
    `.TriContourSet` because it internally calls `.ContourSet.changed()`.

xunits, yunits : registered units, optional

Override axis units by specifying an instance of a
:class:`matplotlib.units.ConversionInterface`.

antialiased : bool, optional

Enable antialiasing, overriding the defaults.  For
filled contours, the default is *True*.  For line contours,
it is taken from :rc:`lines.antialiased`.

hatches : list[str], optional

A list of crosshatch patterns to use on the filled areas.
If None, no hatching will be added to the contour.
Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

Notes ----- `.tricontourf` fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is::

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

func Tripcolor

func Tripcolor(__llgo_va_list ...interface{}) *py.Object

Create a pseudocolor plot of an unstructured triangular grid.

Call signatures::

tripcolor(triangulation, c, *, ...)
tripcolor(x, y, c, *, [triangles=triangles], [mask=mask], ...)

The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. See `.Triangulation` for an explanation of these parameters.

It is possible to pass the triangles positionally, i.e. “tripcolor(x, y, triangles, c, ...)“. However, this is discouraged. For more clarity, pass *triangles* via keyword argument.

If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly. In this case, it does not make sense to provide colors at the triangle faces via *c* or *facecolors* because there are multiple possible triangulations for a group of points and you don't know which triangles will be constructed.

Parameters ---------- triangulation : `.Triangulation`

An already created triangular grid.

x, y, triangles, mask

Parameters defining the triangular grid. See `.Triangulation`.
This is mutually exclusive with specifying *triangulation*.

c : array-like

The color values, either for the points or for the triangles. Which one
is automatically inferred from the length of *c*, i.e. does it match
the number of points or the number of triangles. If there are the same
number of points and triangles in the triangulation it is assumed that
color values are defined at points; to force the use of color values at
triangles use the keyword argument ``facecolors=c`` instead of just
``c``.
This parameter is position-only.

facecolors : array-like, optional

Can be used alternatively to *c* to specify colors at the triangle
faces. This parameter takes precedence over *c*.

shading : {'flat', 'gouraud'}, default: 'flat'

If  'flat' and the color values *c* are defined at points, the color
values used for each triangle are from the mean c of the triangle's
three points. If *shading* is 'gouraud' then color values must be
defined at points.

other_parameters

All other parameters are the same as for `~.Axes.pcolor`.

func Triplot

func Triplot(__llgo_va_list ...interface{}) *py.Object

Draw an unstructured triangular grid as lines and/or markers.

Call signatures::

triplot(triangulation, ...)
triplot(x, y, [triangles], *, [mask=mask], ...)

The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly.

Parameters ---------- triangulation : `.Triangulation`

An already created triangular grid.

x, y, triangles, mask

Parameters defining the triangular grid. See `.Triangulation`.
This is mutually exclusive with specifying *triangulation*.

other_parameters

All other args and kwargs are forwarded to `~.Axes.plot`.

Returns ------- lines : `~matplotlib.lines.Line2D`

The drawn triangles edges.

markers : `~matplotlib.lines.Line2D`

The drawn marker nodes.

func Twinx

func Twinx(ax *py.Object) *py.Object

Make and return a second axes that shares the *x*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be on the right.

Examples -------- :doc:`/gallery/subplots_axes_and_figures/two_scales`

func Twiny

func Twiny(ax *py.Object) *py.Object

Make and return a second axes that shares the *y*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be on the top.

Examples -------- :doc:`/gallery/subplots_axes_and_figures/two_scales`

func UninstallReplDisplayhook

func UninstallReplDisplayhook() *py.Object

Disconnect from the display hook of the current shell.

func Violinplot

func Violinplot(dataset *py.Object, positions *py.Object, vert *py.Object, widths *py.Object, showmeans *py.Object, showextrema *py.Object, showmedians *py.Object, quantiles *py.Object, points *py.Object, bwMethod *py.Object) *py.Object

Make a violin plot.

Make a violin plot for each column of *dataset* or each vector in sequence *dataset*. Each filled area extends to represent the entire data range, with optional lines at the mean, the median, the minimum, the maximum, and user-specified quantiles.

Parameters ---------- dataset : Array or a sequence of vectors.

The input data.

positions : array-like, default: [1, 2, ..., n]

The positions of the violins. The ticks and limits are
automatically set to match the positions.

vert : bool, default: True.

If true, creates a vertical violin plot.
Otherwise, creates a horizontal violin plot.

widths : array-like, default: 0.5

Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the
available horizontal space.

showmeans : bool, default: False

If `True`, will toggle rendering of the means.

showextrema : bool, default: True

If `True`, will toggle rendering of the extrema.

showmedians : bool, default: False

If `True`, will toggle rendering of the medians.

quantiles : array-like, default: None

If not None, set a list of floats in interval [0, 1] for each violin,
which stands for the quantiles that will be rendered for that
violin.

points : int, default: 100

Defines the number of points to evaluate each of the
gaussian kernel density estimations at.

bw_method : str, scalar or callable, optional

The method used to calculate the estimator bandwidth.  This can be
'scott', 'silverman', a scalar constant or a callable.  If a
scalar, this will be used directly as `kde.factor`.  If a
callable, it should take a `matplotlib.mlab.GaussianKDE` instance as
its only parameter and return a scalar. If None (default), 'scott'
is used.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*dataset*

Returns ------- dict

A dictionary mapping each component of the violinplot to a
list of the corresponding collection instances created. The
dictionary has the following keys:

- ``bodies``: A list of the `~.collections.PolyCollection`
  instances containing the filled area of each violin.

- ``cmeans``: A `~.collections.LineCollection` instance that marks
  the mean values of each of the violin's distribution.

- ``cmins``: A `~.collections.LineCollection` instance that marks
  the bottom of each violin's distribution.

- ``cmaxes``: A `~.collections.LineCollection` instance that marks
  the top of each violin's distribution.

- ``cbars``: A `~.collections.LineCollection` instance that marks
  the centers of each violin's distribution.

- ``cmedians``: A `~.collections.LineCollection` instance that
  marks the median values of each of the violin's distribution.

- ``cquantiles``: A `~.collections.LineCollection` instance created
  to identify the quantile values of each of the violin's
  distribution.

func Viridis

func Viridis() *py.Object

Set the colormap to 'viridis'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Vlines

func Vlines(x *py.Object, ymin *py.Object, ymax *py.Object, colors *py.Object, linestyles *py.Object, label *py.Object) *py.Object

Plot vertical lines at each *x* from *ymin* to *ymax*.

Parameters ---------- x : float or array-like

x-indexes where to plot the lines.

ymin, ymax : float or array-like

Respective beginning and end of each line. If scalars are
provided, all lines will have the same length.

colors : color or list of colors, default: :rc:`lines.color`

linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, default: 'solid'

label : str, default: ”

Returns ------- `~matplotlib.collections.LineCollection`

Other Parameters ---------------- data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *ymin*, *ymax*, *colors*

**kwargs : `~matplotlib.collections.LineCollection` properties.

See Also -------- hlines : horizontal lines axvline : vertical line across the Axes

func Waitforbuttonpress

func Waitforbuttonpress(timeout *py.Object) *py.Object

Blocking call to interact with the figure.

Wait for user input and return True if a key was pressed, False if a mouse button was pressed and None if no input was given within *timeout* seconds. Negative values deactivate *timeout*.

func Winter

func Winter() *py.Object

Set the colormap to 'winter'.

This changes the default colormap as well as the colormap of the current image if there is one. See “help(colormaps)“ for more information.

func Xcorr

func Xcorr(x *py.Object, y *py.Object, normed *py.Object, detrend *py.Object, usevlines *py.Object, maxlags *py.Object) *py.Object

Plot the cross correlation between *x* and *y*.

The correlation with lag k is defined as :math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex conjugate of :math:`y`.

Parameters ---------- x, y : array-like of length n

detrend : callable, default: `.mlab.detrend_none` (no detrending)

A detrending function applied to *x* and *y*.  It must have the
signature ::

    detrend(x: np.ndarray) -> np.ndarray

normed : bool, default: True

If ``True``, input vectors are normalised to unit length.

usevlines : bool, default: True

Determines the plot style.

If ``True``, vertical lines are plotted from 0 to the xcorr value
using `.Axes.vlines`. Additionally, a horizontal line is plotted
at y=0 using `.Axes.axhline`.

If ``False``, markers are plotted at the xcorr values using
`.Axes.plot`.

maxlags : int, default: 10

Number of lags to show. If None, will return all ``2 * len(x) - 1``
lags.

Returns ------- lags : array (length “2*maxlags+1“)

The lag vector.

c : array (length “2*maxlags+1“)

The auto correlation vector.

line : `.LineCollection` or `.Line2D`

`.Artist` added to the Axes of the correlation:

- `.LineCollection` if *usevlines* is True.
- `.Line2D` if *usevlines* is False.

b : `~matplotlib.lines.Line2D` or None

Horizontal line at 0 if *usevlines* is True
None *usevlines* is False.

Other Parameters ---------------- linestyle : `~matplotlib.lines.Line2D` property, optional

The linestyle for plotting the data points.
Only used if *usevlines* is ``False``.

marker : str, default: 'o'

The marker for plotting the data points.
Only used if *usevlines* is ``False``.

data : indexable object, optional

If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` (unless this raises an exception):

*x*, *y*

**kwargs

Additional parameters are passed to `.Axes.vlines` and
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
passed to `.Axes.plot`.

Notes ----- The cross correlation is performed with `numpy.correlate` with “mode = "full"“.

func Xkcd

func Xkcd(scale *py.Object, length *py.Object, randomness *py.Object) *py.Object

Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode.

This will only have an effect on things drawn after this function is called.

For best results, install the `xkcd script <https://github.com/ipython/xkcd-font/>`_ font; xkcd fonts are not packaged with Matplotlib.

Parameters ---------- scale : float, optional

The amplitude of the wiggle perpendicular to the source line.

length : float, optional

The length of the wiggle along the line.

randomness : float, optional

The scale factor by which the length is shrunken or expanded.

Notes ----- This function works by a number of rcParams, so it will probably override others you have set before.

If you want the effects of this function to be temporary, it can be used as a context manager, for example::

with plt.xkcd():
    # This figure will be in XKCD-style
    fig1 = plt.figure()
    # ...

# This figure will be in regular style
fig2 = plt.figure()

func Xlabel

func Xlabel(xlabel *py.Object, fontdict *py.Object, labelpad *py.Object) *py.Object

Set the label for the x-axis.

Parameters ---------- xlabel : str

The label text.

labelpad : float, default: :rc:`axes.labelpad`

Spacing in points from the Axes bounding box including ticks
and tick labels.  If None, the previous value is left as is.

loc : {'left', 'center', 'right'}, default: :rc:`xaxis.labellocation`

The label position. This is a high-level alternative for passing
parameters *x* and *horizontalalignment*.

Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties

`.Text` properties control the appearance of the label.

See Also -------- text : Documents the properties supported by `.Text`.

func Xlim

func Xlim(__llgo_va_list ...interface{}) *py.Object

Get or set the x limits of the current axes.

Call signatures::

left, right = xlim()  # return the current xlim
xlim((left, right))   # set the xlim to left, right
xlim(left, right)     # set the xlim to left, right

If you do not specify args, you can pass *left* or *right* as kwargs, i.e.::

xlim(right=3)  # adjust the right leaving left unchanged
xlim(left=1)  # adjust the left leaving right unchanged

Setting limits turns autoscaling off for the x-axis.

Returns ------- left, right

A tuple of the new x-axis limits.

Notes ----- Calling this function with no arguments (e.g. “xlim()“) is the pyplot equivalent of calling `~.Axes.get_xlim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xlim` on the current axes. All arguments are passed though.

func Xscale

func Xscale(value *py.Object) *py.Object

Set the xaxis' scale.

Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} or `.ScaleBase`

The axis scale type to apply.

**kwargs

Different keyword arguments are accepted, depending on the scale.
See the respective class keyword arguments:

- `matplotlib.scale.LinearScale`
- `matplotlib.scale.LogScale`
- `matplotlib.scale.SymmetricalLogScale`
- `matplotlib.scale.LogitScale`
- `matplotlib.scale.FuncScale`

Notes ----- By default, Matplotlib supports the above-mentioned scales. Additionally, custom scales may be registered using `matplotlib.scale.register_scale`. These scales can then also be used here.

func Xticks

func Xticks(ticks *py.Object, labels *py.Object) *py.Object

Get or set the current tick locations and labels of the x-axis.

Pass no arguments to return the current values without modifying them.

Parameters ---------- ticks : array-like, optional

The list of xtick locations.  Passing an empty list removes all xticks.

labels : array-like, optional

The labels to place at the given *ticks* locations.  This argument can
only be passed if *ticks* is passed as well.

minor : bool, default: False

If ``False``, get/set the major ticks/labels; if ``True``, the minor
ticks/labels.

**kwargs

`.Text` properties can be used to control the appearance of the labels.

Returns ------- locs

The list of xtick locations.

labels

The list of xlabel `.Text` objects.

Notes ----- Calling this function with no arguments (e.g. “xticks()“) is the pyplot equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes.

Examples -------- >>> locs, labels = xticks() # Get the current locations and labels. >>> xticks(np.arange(0, 1, step=0.2)) # Set label locations. >>> xticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels. >>> xticks([0, 1, 2], ['January', 'February', 'March'], ... rotation=20) # Set text labels and properties. >>> xticks([]) # Disable xticks.

func Ylabel

func Ylabel(ylabel *py.Object, fontdict *py.Object, labelpad *py.Object) *py.Object

Set the label for the y-axis.

Parameters ---------- ylabel : str

The label text.

labelpad : float, default: :rc:`axes.labelpad`

Spacing in points from the Axes bounding box including ticks
and tick labels.  If None, the previous value is left as is.

loc : {'bottom', 'center', 'top'}, default: :rc:`yaxis.labellocation`

The label position. This is a high-level alternative for passing
parameters *y* and *horizontalalignment*.

Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties

`.Text` properties control the appearance of the label.

See Also -------- text : Documents the properties supported by `.Text`.

func Ylim

func Ylim(__llgo_va_list ...interface{}) *py.Object

Get or set the y-limits of the current axes.

Call signatures::

bottom, top = ylim()  # return the current ylim
ylim((bottom, top))   # set the ylim to bottom, top
ylim(bottom, top)     # set the ylim to bottom, top

If you do not specify args, you can alternatively pass *bottom* or *top* as kwargs, i.e.::

ylim(top=3)  # adjust the top leaving bottom unchanged
ylim(bottom=1)  # adjust the bottom leaving top unchanged

Setting limits turns autoscaling off for the y-axis.

Returns ------- bottom, top

A tuple of the new y-axis limits.

Notes ----- Calling this function with no arguments (e.g. “ylim()“) is the pyplot equivalent of calling `~.Axes.get_ylim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_ylim` on the current axes. All arguments are passed though.

func Yscale

func Yscale(value *py.Object) *py.Object

Set the yaxis' scale.

Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} or `.ScaleBase`

The axis scale type to apply.

**kwargs

Different keyword arguments are accepted, depending on the scale.
See the respective class keyword arguments:

- `matplotlib.scale.LinearScale`
- `matplotlib.scale.LogScale`
- `matplotlib.scale.SymmetricalLogScale`
- `matplotlib.scale.LogitScale`
- `matplotlib.scale.FuncScale`

Notes ----- By default, Matplotlib supports the above-mentioned scales. Additionally, custom scales may be registered using `matplotlib.scale.register_scale`. These scales can then also be used here.

func Yticks

func Yticks(ticks *py.Object, labels *py.Object) *py.Object

Get or set the current tick locations and labels of the y-axis.

Pass no arguments to return the current values without modifying them.

Parameters ---------- ticks : array-like, optional

The list of ytick locations.  Passing an empty list removes all yticks.

labels : array-like, optional

The labels to place at the given *ticks* locations.  This argument can
only be passed if *ticks* is passed as well.

minor : bool, default: False

If ``False``, get/set the major ticks/labels; if ``True``, the minor
ticks/labels.

**kwargs

`.Text` properties can be used to control the appearance of the labels.

Returns ------- locs

The list of ytick locations.

labels

The list of ylabel `.Text` objects.

Notes ----- Calling this function with no arguments (e.g. “yticks()“) is the pyplot equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes.

Examples -------- >>> locs, labels = yticks() # Get the current locations and labels. >>> yticks(np.arange(0, 1, step=0.2)) # Set label locations. >>> yticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels. >>> yticks([0, 1, 2], ['January', 'February', 'March'], ... rotation=45) # Set text labels and properties. >>> yticks([]) # Disable yticks.

Types

This section is empty.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL
JackTT - Gopher 🇻🇳